
Contents

1 Introduction 3

1.1 Features of theCADIC System 3

1.2 The Structure ofCADIC . 8

1.3 The Structure of this Book 9

1.4 Notations . 11

2 System Installation 13

2.1 Hardware Requirements . 13

2.2 Software Requirements . 14

2.3 Installation Procedure . 14

3 The Graphical User Interface 19

3.1 Environment Setup . 19

3.2 The Components of the Graphical User Interface 21

4 The Graphical Editor 25

4.1 Introduction . 25

4.2 Basic Concepts ofCADIC 27

ii

4.3 Getting Started . 34

4.4 Graphical Specification . 34

4.5 The First Design: A HalfAdder 35

4.6 Going into Hierarchy: A FullAdder 41

4.7 Parameterization: An n Bit Comparison Tree 46

4.7.1 Basic Equation for the n Bit Comparison Tree 47

4.7.2 General Equation for the n Bit Comparison Tree . . 49

4.8 Design of an n Bit Conditional Sum Adder 57

4.8.1 Basic Concepts of the Conditional Sum Adder 58

4.8.2 General Equation for an n Bit Conditional Sum Adder 59

4.8.3 Basic Equation for a 1 Bit Conditional Sum Adder . 71

4.8.4 General Equation for the Selection Subcircuit 77

4.8.5 Basic Equation for the Selection Subcircuit 84

4.8.6 General Equation for Shuffle Subcircuit 91

4.8.7 Basic Equation for Shuffling Subcircuit 94

4.8.8 General Equation for the Cutting Subcircuit 96

4.8.9 Basic Equation for the Cutting Subcircuit 100

4.8.10 Equation for the complete n bit adder 102

4.8.11 Summary . 107

5 Hierarchy Representation 109

5.1 The DAG Data Structure 109

5.2 Building the DAG Structure 113

5.2.1 A First DAG: The HalfAdder 114

5.2.2 More Hierarchy Levels: The FullAdder 116

iii

5.2.3 Parameterized Levels: The 2n Bit Comparison Tree . 118

5.3 A Larger Design: The 16 Bit Conditional Sum Adder 122

5.3.1 A System of Linear Equations for the Wire Variables 124

5.3.2 A Note on Wire Variables 132

5.4 Visualization of the DAG Structure 133

5.5 Hierarchy Check . 135

5.6 Navigation through the Hierarchy 140

5.7 Examining the Cgraph . 145

5.8 Wrong Parameter Values? 149

5.9 Views . 150

5.10 Save the Hierarchy Levels 153

6 Logic Simulation 155

6.1 Introduction . 155

6.2 Getting Started . 155

6.3 Sample Session . 157

6.3.1 Load and Prepare a Design for Simulation 157

6.3.2 Simulation of a Single Pattern 159

6.3.3 Tracing through Simulation Results 161

6.4 More Simulation Functions 163

6.4.1 Load and Prepare for Simulation 163

6.4.2 Simulation of a Single Pattern 164

6.4.3 Changing the Display Mode 166

6.4.4 Simulation of a List of Patterns 168

iv

7 Layer Assignment 173

7.1 Introduction . 173

7.2 The Algorithm integrated inCADIC 174

7.3 Layer Assignment for the Halfadder 176

7.4 Colouring the Fulladder . 178

7.5 Multi Layer Wires: the 16 Bit Conditional Sum Adder . . . 181

8 Power Supply 189

8.1 Introduction . 189

8.2 The Algorithm integrated inCADIC 190

8.2.1 Calculation of the Topology 190

8.2.2 Sizing of the Power Supply Nets 192

8.3 Power Nets for the Fulladder 192

8.4 Power Supply for the Conditional Sum Adder 195

9 Geometrical Layout Design 201

9.1 Introduction . 201

9.2 The Layout for the Fulladder 202

9.3 Layout for the 16 Bit Conditional Sum Adder 207

9.3.1 Layout Expansion . 210

9.3.2 Layout Tracing . 212

9.3.3 Layout Views . 213

9.3.4 Layout Scrolling . 215

9.3.5 Output of the Layout Result 215

v

10 Recursive Specifications 217

10.1 Odd–Even–Mergesort . 217

10.1.1 The Sorting Algorithm 218

10.1.2 Graphical Specification 219

10.2 Integer Multiplication . 227

10.3 A Realization of a Fast Divider 232

10.3.1 Introduction . 232

10.3.2 General Description of the Divider 232

10.3.3 Graphical Specification of the Divider 235

11 Design Conversion 247

11.1 Introduction . 247

11.2 Supported Formats . 248

11.3 Design Conversion . 250

12 Editor Reference 255

12.1 Basic Structures . 255

12.2 Schematics . 257

12.2.1 Load Schematic . 257

12.2.2 Save Schematic . 261

12.2.3 Save Schematic under New Name 262

12.2.4 Clear Schematic . 262

12.2.5 Delete Schematic . 263

12.3 Cells and Macros . 263

12.3.1 Enter Cells . 263

vi

12.3.2 Move and Rotate Cells 271

12.3.3 Resize Cells . 273

12.3.4 Copy Cells . 274

12.3.5 Rename Cells . 275

12.3.6 Delete Cells . 276

12.4 Wires . 277

12.4.1 Enter Wires . 277

12.4.2 Delete Wires . 282

12.5 Comments . 283

12.5.1 Enter Comments . 283

12.5.2 Delete Comments . 283

12.6 Equations . 284

12.6.1 Enter Equations . 284

12.6.2 Delete Equations . 285

12.7 Views . 285

12.7.1 Zooming . 285

12.7.2 Scaling . 286

12.8 Miscellaneous . 287

List of Figures

1.1 Integrated Design Environment ofCADIC 8

1.2 Readers guide for theCADIC manual 10

3.1 Basic structure of the graphical user interface 22

4.1 Vertical composition of two logic topographical nets 28

4.2 Horizontal composition of two logic topographical nets . . . 29

4.3 Two representatives of a logic topological net 30

4.4 Refinement operator for the example of a FullAdder 31

4.5 Expanded representation of the binary comparison tree Tree[3] 33

4.6 Dialog for opening a new schematic 36

4.7 Dialogs for cell and macro selection 37

4.8 Placement of the basic cells for HalfAdder 38

4.9 Wiring for HalfAdder . 40

4.10 Using the macro HalfAdder to construct a fulladder 42

4.11 Wiring of FullAdder and creating a knee for a connection

between two pins . 44

4.12 Final wiring for FullAdder 45

viii

4.13 The basic equation for the n bit comparison tree 48

4.14 Placing a parameterized macro cell for the recursive specifi-

cation of the comparison tree 51

4.15 Resizing a parameterized macro cell 52

4.16 Creating a copy of an exisiting macro cell 53

4.17 Entering a wire of parameterized width 55

4.18 Final wiring for the 2n bit comparison tree 57

4.19 Dialog for opening a new schematic 60

4.20 Dialogs for cell and macro selection 61

4.21 Placing a parameterized macro cell for the recursive specifi-

cation of the conditional sum adder 63

4.22 Resizing a parameterized macro cell 64

4.23 Creating a copy of an exisiting macro cell 65

4.24 Parameterized macro cells for the n bit conditional sum adder 66

4.25 Connecting a module with the northern border of the schematic 68

4.26 Final wiring for the conditional sum adder 69

4.27 Comments placed at the input and output wires of CSA[n] . 71

4.28 Placement of the basic cells for the 1 bit conditional sum adder 73

4.29 Wiring for the 1 bit conditional sum adder 74

4.30 Remarks for the input and output signals of CSA[1] 77

4.31 Feed through for the carry wires 81

4.32 Final wiring for the selection subcircuit 82

4.33 Comments for the input and output signals of SEL[k] 83

4.34 Final wiring of SEL[1] . 88

4.35 Remarks for the input and output signals of SEL[1] 90

ix

4.36 Schematic for the general equation SHUFFLE[n] of the shuf-

fling subcircuit . 93

4.37 Schematic for the basic equation SHUFFLE[2] 97

4.38 Graphical input for the general equation of the cutting sub-

circuit CUT[k] . 99

4.39 Projection of a single wire in the basic equation of the cutting

subcircuit CUT[1] . 102

4.40 Graphical input for CSADDER[n] with an additional equation

for unique specification of the wire variables @a[n] and @b[n] 106

5.1 Basic structure treenode of the hierarchical representation . . 111

5.2 Transition from an instance of a treenode at level i to the

corresponding treenode at level i + 1 112

5.3 The stack during the loading of HalfAdder 115

5.4 DAG structure for HalfAdder 116

5.5 The stack during the loading of FullAdder 118

5.6 DAG structure for FullAdder 119

5.7 The stack during the loading of Tree[2] 120

5.8 DAG structure for Tree[2] 121

5.9 Deriving equations about the wire variables 125

5.10 Equations for the wire variables at the lowest hierarchy level 127

5.11 Evaluated wire variables at the top level of CSA[16] 128

5.12 Specification with illegal solution for the system of linear

equations over its wire variables 129

5.13 Display of the equations about the wire variables 130

5.14 Display of the names of wire variables 131

x

5.15 Visualization of the DAG structure for CSA[16] 133

5.16 Grid of the hierarchy window for scrolling the visible area . . 135

5.17 An error in the schematic CSA[n] at the western border of

the instance SEL[n/2+1] . 138

5.18 Visualization of specification errors at the hierarchy level

CSA[8] . 139

5.19 Tracing down from CSA[16] into SEL[9] 141

5.20 Tracing down from SEL[2] into SEL[1] and arriving at the

lowest hierarchy level . 142

5.21 Trace view window with path from CSA[4], then SEL[3] to

SEL[1] . 144

5.22 Cgraph window with node informations 146

5.23 Input window with the prompt for showing the information

of a specified node . 150

6.1 Macro A contains virtual cycle 156

6.2 Two busses in macro A with non unique data flow 156

6.3 Creation of a hierarchical simulation program 158

6.4 Circuit FullAdder loaded and prepared for simulation 159

6.5 Setting input value for the right input pad 160

6.6 Simulation results for a single input pattern 1 + 0 + 1 161

6.7 Simulation results at the HalfAdder level of the FullAdder

specification . 162

6.8 Circuit CSADDER[4] loaded and prepared for simulation . . . 164

6.9 Setting input value for the left input pad 165

6.10 Simulation results for a single input pattern 11 + 10 166

xi

6.11 Display of simulation results in decimal mode 167

6.12 Simulation results for pattern 7 170

7.1 Circuit with layer assignment in two layers 173

7.2 Layer assignment for multi wire nodes 175

7.3 Layer assignment for HalfAdder 177

7.4 Layer assignment for FullAdder 179

7.5 Layer assignment for the 16 bit conditional sum adder 182

7.6 Refinement operation for multi layer wires 184

7.7 Navigation to the lowest hierarchy level CSA[1] 185

8.1 Generation of a slicing tree for each treenode in a hierarchical

description . 191

8.2 Topology of the power supply nets for the FullAdder level . 194

8.3 Sizing of the wire segments of the power supply nets for the

FullAdder . 195

8.4 Power supply nets for CSA[16] with linear sizing of the wire

segments . 197

8.5 Power supply nets for the 16 bit conditional sum adder at

the lowest hierarchy level CSA[1] 198

9.1 Generation of BTG–Nets for each treenode in a hierarchical

description . 203

9.2 Hierarchical layout for FullAdder 205

9.3 Complete expansion of the layout for FullAdder 207

9.4 Fit the display of the layout CSA[16] in the workarea 209

9.5 Expanding the right instance CSA[8] one single step 210

xii

9.6 Expanding the left instance CSA[8] for three hierarchy levels 211

9.7 Complete expansion of the layout for CSA[16] 212

9.8 Tracing down to the layout of CSA[8] 212

10.1 Sorting circuit for n = 2k elements of type t 217

10.2 Recursive definition of the sorting of n > 1 elements 220

10.3 Recursive specification for the merging subcircuit Merge[n] . 221

10.4 Recursive specification of the shuffling operation for two se-

quences of n elements . 222

10.5 Single element of the array of compare components 223

10.6 Layout for the sorting network for 64 elements of single bit

values . 225

10.7 Computation of the partial products 227

10.8 Recursive specification of one column of the partial multiplier 228

10.9 Recursive specification of one column of the partial multiplier 229

10.10Layout for the 16 bit integer multiplier 230

10.11The top level of Divider[n] 235

10.12Array[n] . 236

10.13One row of the division array 237

10.14First part of each row DUV 238

10.15Elements in the middle of each row MV 240

10.16The last element in each row LV 241

10.17Reduction from the redundant representation to standard bi-

nary representation Red2BinFast[n] 242

10.18Recursive specification for Red2BinFastRow[n] 243

1

10.19Layout for the 16 bit divider Divider[16] 245

11.1 Components for generating exchange formats 248

12.1 Syntactical structure of an unsigned integer 256

12.2 Syntactical structure of identifiers 256

12.3 List window for schematic names in DAGDIR with selected

entry **** New **** . 258

12.4 Input window for the specification of a new schematic name 259

12.5 Syntax diagram for schematic names 259

12.6 Cell selection windows for basic cells, discrete and parame-

terized macros . 264

12.7 Graphical representation of an and gate with two inputs se-

lected from the basic cell library 265

12.8 Graphical representation of a discrete macro cell in the case

of a 1 bit conditional sum adder 266

12.9 Syntax of parameterized macro names 267

12.10An expression consists of a single term or the comparison

between two terms . 268

12.11Syntactical structure of term which is the additive combina-

tion of two factors . 269

12.12Syntactical structure of factor which is the multiplicative

combination of two units . 270

12.13Syntactical structure of an object of type unit 271

12.14Sequence of possible orientations of a basic cell 272

12.15Wires with different widths 278

12.16Syntactical structure for the width of a wire 280

2

12.17Structure of a wire variable 281

1
Introduction

CADIC is a hierarchical top–down design system for VLSI circuits. It

has been developed at the Lehrstuhl of Prof. Dr. Günter Hotz at the

Department of Computer Science, University of Saarland, Saarbrücken,

Germany. The development of CADIC is supported by the Deutsche

Forschungsgemeinschaft (DFG) within the Sonderforschungsbereich 124

“VLSI–Entwurfsmethoden und Parallelität” since 1983.

1.1 Features of the CADIC System

In comparison to other VLSI design systems, the CADIC system possesses

the following distinctive features :

Parameterization

The design level of CADIC especially supports the specification of whole

families of circuits which can depend on a set of parameters. For example

these parameters can be used to have operands of flexible bit length (the

user can design an n bit adder) or generic descriptions of circuits (a sorting

network for arbitrary types of elements).

The designer can use sub–circuits which depend on arithmetical expressions

over the set of circuit parameters. As well as the sub–circuits, the user may

parameterize the width of a bundle of wires (equivalent to busses). With

the help of parameterization multiple descriptions of the same circuit with

4 Chapter 1. Introduction

different sizes can be avoided. The use of parameterized sub–circuits and

wires makes it possible to define a class of even very large circuits by only

a few schematic inputs.

Recursive Specification

Recursion is one of the most impressive properties of CADIC . This feature

admits recursive design operations in a topological framework and makes it

possible for a hardware designer to easily specify regular circuits in a very

compact and easy way. Like the recursive definition of functions in pro-

gramming languages, references on the calling sub–circuit itself are allowed.

The base of a recursive description are sub–circuits with fixed values for the

parameters.

As well as the sub–circuits the designer has to parameterize the width of

bundles of wires within a recursive specification. For the situation that it

is too difficult to derive an arithmetical expression for a bundle of wires

which holds for all stages of the recursion, CADIC offers the designer a very

easy and comprehensive way of parameterizing wires. It allows the designer

to use formal variables, denoted as wire types, to describe the width of a

bus. It is possible to use an expression containing both indicated variables

and arithmetical expressions over the set of circuit parameters. Within the

recursive specification the indices of these wire types can be arithmetical

expressions over the set of circuit parameters.

It is very significant that the recursive description together with the use of

wire variables enables a user to setup generic specifications of algorithmic

structures as for example sorting networks or parallel prefix computation

parts ([Bur94]). These circuits for example can be specified independent

from the realization of the basic operation. Later they can be configured

according to special needs. The basic operation of a parallel prefix computa-

tion circuit can be chosen in order to construct a carry look ahead adder or

a leading zero counter etc. without changing any other input of the parallel

prefix network.

Section 1.1 Features of the CADIC System 5

With the help of this description method the designer can setup his own

library of reusable circuit structures. By this CADIC makes the graphical

design methods become as strong and flexible as the text design methods.

Hierarchical Representation

An important problem during the design of large circuits is to control the

amount of generated data. In CADIC we take advantage from the fact that

large circuits often contain very regular structures. This can be used to

setup a very compact representation in the form of an internal hierarchical

data structure which is given by a directed acyclic graph (DAG). The DAG

is a folded tree structure which is constructed in a top–down process over

all sub–circuits of the design. Its root node is the given circuit C. All

sub–circuits of C are internal nodes of the tree, in which same sub–circuits

appear only once. The leaves of the tree are the basic cells or sub–circuits

which only contain wiring structures. To construct this data structure for

the required circuit, its parameters, if it depends on those, must be set to

fixed values. This means that from the whole family of circuits given by

a parameterized description we will now select one special representative

(construct a 32 bit adder out of the n bit adder family).

After the hierarchical data structure is built, the system calculates all arith-

metic expressions in the parameterized description, including the indices of

the formal variables. If the designer has used wire variables to denote bun-

dles of wires, the system will now derive a set of equations from the hierar-

chical representation in order to compute a legal solution for the variables.

If this last step is successful, the created hierarchical data structure serves

as the basic structure for the integrated design tools.

Integrated Design Environment

In order to make the integration of newly developed design tools possible,

the graphical design environment of CADIC is implemented like a work-

bench. The core of the system is a graphical user interface which is basic

for all design steps. For special needs of certain design tools it can be

6 Chapter 1. Introduction

enlarged by tool specific graphical components.

The modular implementation of CADIC supports the configurability of the

whole system. Each tool is given by its own object code libraries, which can

be linked into the graphical surface. Prerequisite is that each tool creates

a relation between its internal data structures and the central hierarchical

data structure of CADIC or that it directly works on it. Beside this a design

tool may also be a stand alone program. In this case it can be connected

to the graphical surface via interprocess communication.

Based on this open hierarchical data structure, CADIC has formed an inte-

grated design environment which manages the different steps of the design

process. The system CADIC 3 0 includes integrated tools for

2 logic simulation

2 timing analysis

2 layer assignment

2 power supply

2 place and route

2 net–list converters

The hierarchical data structure of CADIC provides a basis, on which new

tools can be developed and easily integrated.

Visualization and Navigation

The integrated design tools of CADIC can directly display the calculated

results and design data within the graphical user input, such that a relation

between the design data and the specification is created.

The visualization of the data in combination with the navigation through

the circuit hierarchy enables the user to find critical parts of a specification,

where the design tools compute bad results. For example you can easily

locate such regions of a design, where a logic simulator indicates wrong

results in the specification.

Section 1.1 Features of the CADIC System 7

In order to enable the visualization of data, the types of design data are

specified by a simple description language, from which a parser generates

the necessary library of graphical functions, that is linked into the surface of

CADIC . If a tool is directly integrated in the graphical environment it can

visualize its design data by calling the functions from this generated library.

If a tool is not integrated into the surface and works independently, the data

can be transferred to the surface of CADIC by interprocess communication

(IPC).

Compared with pure text–form representation, there are especially possi-

bilities to graphically display data using timing diagrams, point diagrams,

line diagrams or histograms, etc.

Conversion Interfaces

There exist a lot of conversion interfaces in CADIC to export a circuit

specification in the net–list formats of commercial systems. Especially this

means that the designer cat setup parameterized circuit specifications and

extract special representatives in a standard exchange format. CADIC 3 0

can generate the following different net–list formats:

2 Electronic Design Interchange Format (EDIF 2 0 0)

2 Desgin Exchange Format (DEF) for TANGATE Placement and Rout-

ing System from CADENCE

2 Genrad Hardware Description Language (GHDL) for HILO Simula-

tion Tool from GENRAD

2 StrukturBeschreibungsSprache (SBS) for Venus Design System from

SIEMENS

2 Xilinx Netlist Format (XNF) for XACT FPGA Development System

of Xilinx

Thereby, the CADIC system could be used as graphical front end for many

commercial VLSI design systems. By selecting a certain library of basic

8 Chapter 1. Introduction

cells the hardware designer can choose any required technology to realize

his design.

1.2 The Structure of CADIC

The integration of the given features into a common graphical environment

is shown in figure 1.1.

X-Window System, Operating System, File System

Graphical Editor
for Parameterized

Spezifications

Evaluation

Scanner, Parser

Parameter Values

Graphical User Interface

Basic Library

Lib3Lib1
Lib2

PPB[n]

param.
Designs

GA[m,e]ad[k]

Data Structure
for Hierarchical

Circuits

Navigation

Visualization

Modification

Placement/Routing

Timing Analysis

Test Pattern Generation

Fault Simulation

Logic Simulation

Power Supply

Net-list Converter

Logic Synthesis

Layer Assignment

Figure 1.1: Integrated Design Environment of CADIC

With the help of the graphical editor the user can setup parameterized

circuit designs over an arbitrary library of basic cells. From such a param-

eterized description the designer can select a specific element, i.e. a fixed

circuit, by giving explicit values for its parameters. According to these pa-

rameter values the system will build a hierarchical data structure which

is the base for all integrated design tools. This data structure is used to

visualize the desgin results. With the help of navigation functions the hier-

archical strucutre can be traversed in every direction in order to completely

examine the design data.

Section 1.3 The Structure of this Book 9

1.3 The Structure of this Book

The structure of this book is orientated at the structure of the CADIC

system as it is shown in figure 1.1.

In chapter 2 we will describe how the system can be installed on your hard

disk.

In chapter 3 the main components of the graphical user interface and the

setup of CADIC ’s environment are explained.

In chapter 4 we will show, how you can setup a parameterized specification

with the help of the graphical editor of CADIC . An adder for n bit operands

is specified in order to introduce you to the work with the graphical editor.

In chapter 5 CADIC ’s hierarchical data structure is explained. It is shown,

how the system extracts one element of a parameterized circuit specification

and builds up its basic hierarchical representation in the machine’s memory.

In chapter 6 the logic simulation tool is introduced. This tools provides a

simple method for checking your design on the base of the graphical speci-

fication, i.e. you can control the results of a simulation step graphically at

the inputs and outputs of each subcircuit.

In chapters 7 to 9 we describe the integrated tools for layer assignment,

for generation of the power supply nets and for calculation of a geometrical

layout.

Chapter 10 gives you an impression of the parameterized design mehtod of

CADIC . With the help of three examples we will demonstrate the power of

this description method by giving short and handy specifications for even

large circuits.

In chapter 11 CADIC ’s interfaces to commercial systems and standard

exchange formats are shown. With the help of these interfaces you can

exchange a CADIC design with other design systems for further processing.

Chapter 12 contains a reference manual for the graphical editor. The basic

syntactical structures for parameterized designs are explained as well as

10 Chapter 1. Introduction

the handling of the different editor functions. This chapter in addition to

chapter 4 and chapter 10 enables you to setup parameterized descriptions

yourself.

Introduction

System Installation

Graphical User Interface

Graphical Editor

Hierarchical Representation

Logic Simulation

Layer Assignment

Power Supply

Geometrical Layout

Recursive Specifications

Interfaces to Commercial Systems

Editor Reference Manual

Editor Reference Manual

Figure 1.2: Readers guide for the CADIC manual

Figure 1.2 gives you a guide through the chapters of this book. For the

understanding of the principles of CADIC you should read the main chapters

(dark grey boxes) at least. The chapters about the system installation and

the integrated design tools can be read later, when you want to perform

the corresponding design task for a given specification. During the reading

of the chapters about the graphical editor and the recursive specifications

you can directly work with the system in order to setup these specifications

Section 1.4 Notations 11

youself. In that case it may be helpful to have a look at the editor refrence

manual.

1.4 Notations

In this book we use the following typographical conventions:

The italic font is used to introduce important new terminologies defined in

the book which are used in following paragraphs.

The typewriter font is used to indicate system messages that appear on

your screen. It also denotes user input to CADIC as well as system files,

directories and environment variables.

Beside different fonts we use the following signs to give you some hints

within the text:

This sign is used to mark important parts in the text. For example some

requirements, without which the system would not work, are marked in this

way.

This sign gives you a reference to other paragraphs in the book, where you; 3,5.1

can find more information about the current subjects.

The extracted pictures from the menuline inserted in the text help you to

identify the corresponding entries in the system menus and illustrate which

button is currently to be selected. Within the text it is described how the

corresponding function can be invoked and terminated.

12 Chapter 1. Introduction

2
System Installation

2.1 Hardware Requirements

For the installation of the CADIC system you need one of the following

hardware configurations:

2 Sun Sparc Station 2, 10 or 20 with SunOS 4. 1. x

2 PC486/586 with Linux 1.x

2 HP Apollo Series 700

The system has been developed and tested on the first configuration. On

the two other configurations it has been compiled and installed successfully,

but not all components have been tested. There could occur some troubles

which might be caused by specific sources of the operating system.

You should have at least 90MB of free disk space and 8MB of memory. For

best use of the system your workstation or PC should have a color screen

with a resolution of at least 1024×768 pixels. This is an important aspect,

if you plan to install the system on a linux PC, because your VGA graphics

card may not support this resolution.

If you get a copy of the executable CADIC system, you can skip the following

software requirements. In this case you only have to perform the unpacking

steps in section 2.3. After that you can start the system by calling one of

the example scripts in the directory Examples.

14 Chapter 2. System Installation

2.2 Software Requirements

In order to compile the sources of the system you need a C– and C++–

Compiler as well as a scanner and parser generator. They have been suc-

cessfully compiled with one of the following configurations:

2 SunOS cc and At&T CC with yacc and lex

2 gcc and g++ with bison and flex

If you use the GNU software the version of the compilers should be 2.5.8 or

newer.

For the graphical surface of the system you need an installation of the X–

Window System X11R5/R6.

Make sure that the compiler commands cc (gcc) and CC (g++) are in your

command path as well as lex (flex) and yacc (bison). Further you need

access to the X-Window libraries and header files.

2.3 Installation Procedure

If you have the required hardware and software environment you can begin

with the installation procedure. You can install the system anywhere in

the directory tree, i.e. you need not to have root permissions to perform

the installation. If you want to take a first glance at the CADIC system we

recommend that you install it within a subdirectory of your home directory.

You can do this with the following commands:

cd $HOME

mkdir Cadic

cd Cadic

In the following we call the newly created subdirectory Cadic the top in-

stallation directory or top directory for short. Now you copy the CADIC

archive file into the top directory and unpack the sources. Here we assume

Section 2.3 Installation Procedure 15

that you have got the sources via magnetic tape. The commands to copy it

to the hard disk are:

mt -f /dev/nrst0 rewind

dd if=/dev/nrst0 of=./cadic.tgz

You also may get the archive file cadic.tgz directly via anonymous ftp

from hamster.cs.uni-sb.de.

Now you can unpack the archive file with the following command sequence:

cat cadic.tgz | gunzip | tar xvf -

After that you can remove the original archive file in order to save disk

space:

rm -f cadic.tgz

After unpacking the archive file you will see the following list of directories

and files in the top directory:

Data Imakefile Libs System cadic.tmpl

Examples Includes Src Tools

INSTALLATION Leda Surface cadic.rules

Data: This directory contains subdirectories for global and temporal data

of the system. The descriptions of the basic cell libraries are located

here as well as some example designs.

Examples: This directory contains some example shell scripts which setup the

environment variables of CADIC and start the system. You can call

these scripts after the installation is completed.

INSTALLATION: This file contains a short description of the installation commands. If

you are really impatient and familiar with installing software on a unix

machine, this file shows to you the steps to perform the installation.

Includes: This directory subtree contains the header files of the system.

Leda: This directory subtree contains version 3.0 of the LEDA [MN89] li-

brary. CADIC depends on this special version. Because you might not

16 Chapter 2. System Installation

have an installation of the LEDA library, it is included in the CADIC

distribution. It will be compiled during the installation, but it will

not replace any previous installation of LEDA.

Libs: Initially this directory is empty. It will contain the object code li-

braries of CADIC and LEDA which are created during the compilation

of the system sources. If you plan to write programs using the basic

data structures of CADIC , you will find the corresponding libraries

in this directory and have to set the linker options appropriately.

Src: This directory subtree contains the sources of CADIC , divided into

several libraries which contain the functions of the basic data structure

and the integrated design tools.

Surface: This directory contains the description of the graphical surface of

CADIC . For each design tool there exists a file which configures its

menu entries.

System: This directory contains the main part of the CADIC system. After the

installation is completed it will contain the executable program which

is called cadic. You can call it directly from this directory, but it is

more convenient to use a shell script from the Examples subdirectory

which sets up a correct environment for the system, before it is started.

Tools: This directory contains some tools which are needed for the installa-

tion. The main tool is a compiler which translates the surface descrip-

tions from the Surface subdirectory into a C module. This module

serves for the menu display, selection and activation of the correspond-

ing functions. It is included into the main part of the surface.

cadic.rules: This file contains some macros which are used by imake to create the

Makefiles.

cadic.tmpl: This file contains a templative description of the installation envi-

ronment. You have to edit this file in order to set up the compiler

commands etc. as you will see in the following.

Before you can start the compilation of the sources you have to edit the

Section 2.3 Installation Procedure 17

macros in cadic.tmpl. The macro CC is set to the C compiler command.

In the default distribution it is set to gcc, change it, if you want to use

the traditional SunOS C compiler. The next macro CPLUSPLUS points to

the C++ compiler, it is set to g++. In the same way change the macros

YACC and LEX, which represent the commands for the parser and scanner

generator.

Finally take a look at the macro CDEBUGFLAGS. This defaults to -g in order

to create a debugging version of the system. If you do not want this, just

erase any text behind the equal sign in this line and set CDEBUGFLAGS to

the empty string. This results in much smaller object files and executables

and is recommended, if you have less free disk space.

Now start the installation from the top directory with the command:

xmkmf

Note that you need an installation of the X–Window system to use this

command. The directory /usr/bin/X11 must be in your command path.

After that, you create the makefiles for CADIC with the command:

make Makefiles

After this command is completed, you can start the compilation of the

source files and the graphical surface simply with the command:

make >& cadic.log &

Depending on your hardware platform this command will take several hours

to complete. If there are any error messages, you can read them on the file

cadic.log.

If it has finished without error, you can find the executable CADIC system

in the subdirectory System. It is called cadic. Before you can start the

program, you have to setup an environment, i.e. you have to define a list

of environment variables. In the subdirectory Examples you can find some

sample shell scripts which set these variables for some example designs and

then start the system.

18 Chapter 2. System Installation

3
The Graphical User Interface

3.1 Environment Setup

Before you can start the CADIC system you have to set some environment

variables in order to tell the system where its temporal and global data

files are located. For example you have to specify a basic cell library which

you want to use during a design. You can find some sample environment

setups in the shell scripts within the directory Examples, a subdirectory

of the top installation directory. The contents of the sample startup file

arith circuits is the following. As the name indicates this file sets the

environment for some sample designs of arithmetical circuits (conditional

sum adder as it is shown in chapter 4 and Wallace tree multiplier).

#!/bin/csh

setenv DAGDIR ../Data/Designs/Arithmetic

setenv CELLDIR ../Data/Cells/Ims/Right

setenv TECHDIR ../Data/Cells/Ims/Power/Tech

setenv SLICEDIR ../Data/Slices

setenv SIMDIR ../Data/Sim

setenv MACROLIB ../Data/Designs/Arithmetic

setenv PARLIB ../Data/Designs/Arithmetic

setenv PWRDIR ../Data/Power

setenv HILODIR ../Data/Formats

20 Chapter 3. The Graphical User Interface

setenv NBSDIR ../Data/Formats

setenv CADENCEDIR ../Data/Formats

setenv VENUSDIR ../Data/Formats

setenv EDIFDIR ../Data/Formats

../System/cadic

You can create yourself such a shell script for a special design. Another

method to setup the environment variables is to add the needed commands

to your .cshrc which is executed, when you start a new shell.

For the correct setup of the system environment you have to give values to

the following variables:

2 CELLDIR: This variable points to the library of basic cells, you want

to use during the design. The cell libraries in the current CADIC

distribution are contained in the subdirectories Data/Cells of the

top installation directory. A description of the available libraries is

given in chapter 11. Note that you cannot use the system, if CELLDIR

has no legal value.

2 DAGDIR: This variable points to the directory, which contains the

schematic inputs of your designs. Initially this directory may be

empty. Note that you must set this variable to a legal value, i.e.

the given directory must exist. If this is not yet the case, you must

create it with the command

mkdir -p <directoryname>

2 TECHDIR: This variable points to the subdirectory which contains tech-

nological data about the cells in the basic cell library. Normally it is

just a subdirectory of CELLDIR which is called Tech. If you only want

to enter a design, it is not necessary to set this variable. In the case

that you do not set it, you cannot use the tools for power supply and

place&route. If you have already set the variable CELLDIR, you can

simply use the command

Section 3.2 The Components of the Graphical User Interface 21

setenv TECHDIR $CELLDIR/Tech

2 SLICEDIR: This variable points to a directory, which will contain data

files that are temporarily generated during the design process. If you

do not set this variable to a legal value, i.e. an existing directory, you

cannot use the tools for power supply and place&route.

2 PWRDIR: Just like SLICEDIR this variable points to a directory for tem-

porarily generated data. If you do not set this variable to a legal value

(existing directory) you cannot use the tool for power supply.

2 SIMDIR: The directory given by this variable contains data which is

generated by the tool for logic simulation. If you want to use the

simulator, you must set this variable to a legal value.

2 MACROLIB, PARLIB: These two files contain information about cre-

ated macros and parameterized macro cells. They are used by the

schematic editor. It is recommended to set these variables to legal file

names.

2 HILODIR, NBSDIR, CADENCEDIR, VENUSDIR, EDIFDIR: These vari-

ables can be set to directories for files, which are created by the netlist

converter. They contain specific exchange formats which can be used

as input for commercial design systems. In order to distinguish be-

tween the different formats, you can set each of these variable to its

own value.

If you do not like to distinguish between the different directories for the tem-

porarily generated data, you can set all these variables (SLICEDIR, PWRDIR,

SIMDIR, HILODIR, NBSDIR, CADENCEDIR, VENUSDIR, EDIFDIR) to the same

value, e.g. to /tmp or /usr/tmp.

3.2 The Components of the Graphical User Interface

If you startup the CADIC system, the basic graphical user interface is dis-

played on your screen as it is shown in figure 3.1.

22 Chapter 3. The Graphical User Interface

Figure 3.1: Basic structure of the graphical user interface

The structure of the user interface is basic to all integrated design tools. But

each tool can add its own components, as dialog windows or information

displays. The basic graphical user interface can be divided into the following

parts:

2 Work area: This is the main part of the user interface. It is used to

display the currently loaded circuit. The display mode depends on

the active tool. During an editor session you will see the netgraph of

the circuit which can be interactively modified, as it is described in

chapter 4. This mode is also used for other design tools, for example

during logic simulation. Here the simulation results are displayed

directly on the graphical input of the circuit. Another display mode

is used, when the place&route tool is active. In this case the wires

have physical widths, and they will be displayed as polygons as it is

described in chapter 9.

Section 3.2 The Components of the Graphical User Interface 23

2 Environment: The environment area is divided into eight panels. Here

you can see the values of the environment variables of CADIC . The

library of basic cells currently used is displayed as well as the directory

where your design files are located. The right panel in the first row

which is initially empty, will contain the name of the currently loaded

circuit.

2 Control area: If you change the current view of a loaded circuit by

zooming or scrolling in the work area, you can see in this window the

relation between the currently visible part of the circuit and its total

area.

2 Message area: Control and error messages of CADIC are displayed in

this area. Every integrated design tool prints information messages

while it is performing its task. If you are using a window manager

(twm, mwm, fvwm, . . .), you will see that this window is decorated as a

usual shell window. This enables you to change its size, if the default

height of five text lines is not sufficient. You can also add a scroll bar

to the window, if you want to take a look at some previously displayed

messages. For information about how to change the size of a window

or how to add a scroll bar, you should look at the manual of your

window manager.

2 Main menu: The menu line of CADIC is organized hierarchically. At

the topmost level you will see the list of integrated design tools which

are grouped according to their specific tasks (e.g. there are some tools

for analysis and others for synthesis of the currently loaded circuit).

Each tool has its own menu, sometimes including several sub menus.

You activate a certain menu or function by pressing the left mouse

button, when the appropriate push button is highlighted. To leave an

activated menu or sub menu you simply must press the right mouse

button within the menu line, when you are in menu selection mode.

24 Chapter 3. The Graphical User Interface

4
The Graphical Editor

4.1 Introduction

Today the specification of integrated circuits is based on two different meth-

ods: procedural or graphical. In the first case the specification is given in

a hardware description language (HDL). In most cases these languages are

derived from imperative or functional programming languages. They can

be classified according to the represented properties of the circuit:

2 languages that only describe the functional behaviour of the circuit

without considering any structural properties, e. g. ISPS ([Bar78]) or

Macpitts ([SSC82]).

2 languages that describe both functional and structural properties, e. g.

Zeus ([GL85]), Hades ([Wir82]), VHDL ([LSU89], [Sha82]) or EDIF

([Com87]).

2 languages that only describe the structure of the circuit, e. g. HISDL

([Lim82]).

Common to all these languages is a great flexibility, because they allow

the full power and generality of a programming language. Procedures are

written to describe each part of the circuit and are combined hierarchically

using the methods defined for programming languages. Parameters may

be passed to procedures in order to generate different versions of the same

structure.

26 Chapter 4. The Graphical Editor

But the procedural approach suffers from two drawbacks. First it is hard to

embed graphical information in a textual procedure, in other words topo-

logical information is difficult to visualize when specified textually. Second

the results of even small changes in the input cannot be seen without re-

compiling the whole circuit which can be a time–consuming process. Thus

procedural systems tend not to be very interactive.

Systems which base on the graphical specification method offer a graphical

editor to the user. This editor is used to specify structural information of a

circuit, where subcircuits can be placed on the input screen and can be con-

nected with lines. Some editors also allow the specification of behavioural

aspects of a circuit. For instance in the system Gdl ([DBR+88]) the user

can draw petri nets in order to specify control and data flow of a circuit.

In most cases however the graphical input is translated into interchange

formats such that the knowledge of the designer given by the topological

information will be lost.

Such editors normally build the frontends of commercial design systems.

Although they support hierarchical specification they cannot be regarded

as easy to use input tools. An important reason for this fact is that these

commercial editors do not support the extraction of regular parts of circuits

in order to set up parameterized and recursive circuit descriptions.

An exception to the rule is the layout system ESCHER ([CF86]) which

allows parameterized circuit specifications. In this system the user can

group cells together which are somewhat like one dimensional arrays in

programming languages. The disadvantages of ESCHER follow from the

fact that it is not based on a well defined mathematical calculus which

leads to ambiguities in the interconnection of the above groups. Moreover

ESCHER only supports the use of only one single parameter. This is an

ugly constraint because a lot of interesting circuits can be easily described

using more than one parameter. A well known example is the Wallace tree

multiplier ([Wal64]) where a short recursive description with two parameters

is given in [LV83]. A parameterized specification of this multiplier with the; 10.2

help of CADIC ’s graphical editor will be introduced in section 10.2.

Section 4.2 Basic Concepts of CADIC 27

4.2 Basic Concepts of CADIC

Because both approaches have their disadvantages we will now introduce a

specification method which powerfully combines the flexibility of a program-

ming language with an intuitive graphical representation. For this purpose

the design level of CADIC is based on a mathematical calculus, which has

been developed within the project B1 of the SFB124 and which serves as a

programming language for the specification of integrated circuits. The prop-

erties of this calculus, which has originally been introduced in [Hot65] and

[Hot74], are explicitly described in [Mol86]. In the following we will sum-

marize the main aspects in order to understand the design level of CADIC

.

The importance of boolean algebra in the field of the design of logic circuits

is well known. It is the base of a method, which allows us to describe the

logic of circuits and to exploit these objects for further calculations. This

has been sufficient as long as the arrangement of the elementary gates and

the connections between these did not play an important role. Now that

technology has been improved and the integration of millions of transistors

on a single chip can be achieved, the geometrical layout of the wires and

the gates can no longer be neglected. In the design of very large circuits

the geometrical layout directly influences the function of the circuit. From

this point of view it is desirable to have a calculus, which combines the

functional and geometrical aspects of a design.

In order to get an easy to handle method there will be taken some abstrac-

tions in a circuit description. Each circuit will be laid out into a rectangle,

at the border of which its external connectors are placed. Within the rect-

angle there are components which are connected by wires. The whole layout

is projected into the Euclidean plane, such that there are no different lay-

ers first. In order to receive a planar embedding, we consider branches

and crossings of wires as basic components. Further we neglect the physical

width of wires and look at them as sequences of line segments. Each compo-

nent as well as the surrounding rectangle has a northern, eastern, southern

and western border. It also has a name, and sub–circuits with the same

28 Chapter 4. The Graphical Editor

names must have the same number and sequence of external connectors at

each border. This abstract method of describing a circuit is called logic

topographical net.

N

N1

N2

D

C

:= B
D

C

B

A

A

Figure 4.1: Vertical composition of two logic topographical nets

In order to construct larger nets we define two simple operations on logic

topographical nets. Let N1 and N2 be two topographical nets. Then we

define the vertical composition N := N1
eN2, if and only if the southern

border of N1 and the northern border of N2 fit together (c.f. figure 4.1).

In the same way we can define the horizontal composition N := N1
eN2,

if and only if the eastern border of N1 and the western border of N2 fit

together (c.f. figure 4.2).

The resulting net N is given by the two parts N1 and N2, which are con-

nected at their borders, i.e. the external connectors at these borders are

identified and finally they are erased.

With the help of these operations we could create large logic topographical

nets over the set of basic cells, branches, crossings and wire segments.

A disadvantage of this method is that we need an exact topographical de-

Section 4.2 Basic Concepts of CADIC 29

:=

N3N1

A

E

B

A

E

B

N’

Figure 4.2: Horizontal composition of two logic topographical nets

scription of the resulting net. To overcome this restriction we introduce an

equivalence relation between topographical nets. By that relation we con-

sider two topographical nets to be equivalent, if they can be transformed

into each another by a sequence of elementary deformations. Legal defor-

mation steps are deformations of wires, moving, rotating and scaling of cells

as well as repositioning external connectors at the borders of cells. A defor-

mation is illegal, if for example the sequence of the connectors is changed

of if additional crossings of wires are created. All resulting nets during a

sequence of deformations must be legal topographical nets.

According to this set of elementary deformations the two logic topographical

nets in figure 4.3 are equivalent. With this equivalence relation we obtain

classes of logic topographical nets. Each class is called logic topological net

and an element of a class is called a representative of a logic topological net.

The vertical and horizontal composition can be applied to logic topological

nets, if there exist two topographical representatives such that the operation

is defined as shown above, i.e. if there exist two logic topographical nets,

where the connectors can me moved to appropriate positions, such that the

borders can be glued together.

In most cases the designer not only has to look at these numbers of con-

30 Chapter 4. The Graphical Editor

N’
N

=

C

B

A

C

B

A

Figure 4.3: Two representatives of a logic topological net

nectors, but the connectors may have a specific type, such as clock signal

or power supply signals. This fact is represented in the calculus by defining

the composition operations, if the sequences of the signal types, read from

left to right or top to bottom respectively, at the corresponding borders are

identical.

The underlying mathematical calculus is called the bicategory of logic topo-

logical nets ([Mol86]). The description of a circuit within this calculus is

done by bicategorial expressions which consist of the operations e and e
composing basic cells and wiring elements. The following is an example for

a correct bicategorial expression, which we will call net equation, because it

defines a net variable by the corresponding expression.

HalfAdder = (e e1
b
1) e(1

b
1

e e e) e(AND eEXOR)

In this example the symbol stands for an east branch of a wire, denotes

a south–west knee and EXOR is an element from the library of basic cells.

The notation 1 b
1 represents a vertival wire segment of width 1 which is the

unit for the vertical composition.

This small example already indicates that bicategorial expressions can be-

come very large and difficult to handle. To solve this problem we first

Section 4.2 Basic Concepts of CADIC 31

introduce the hierarchy concept for bicategorial expressions.

In the sense of bicategories hierarchy means to transform a net over a set of

cells A into a description over a set of cells B. This transformation is done

by a homomorphic function between bicategories which is called bifunctor.

Let for example

HalfAdder = (e e1
b
1)

e(1
b
1

e e e) e(AND eEXOR)

FullAdder = (HalfAdder e1
b
1) e(1

b
1

eHalfAdder) e(OR e1
b
1)

be two bicategorial expressions. HalfAdder is described over the set of basic

wiring elements plus the basic gates AND and EXOR. FullAdder also uses

basic wiring elements, but beside the basic gate OR it contains the cell Hal-

fAdder which itself is given by a bicategorial expression. In order to get a

description of FullAdder over the set of basic gates, we have to substitute

each occurrence of HalfAdder by the corresponding bicategorial expression.

This substitution step is also called expansion (applying the bifunctor) be-

cause we expand the macro HalfAdder by its representation. The following

figure 4.4 illustrates the expansion step.

FullAdderFullAdder

AND EXOR

AND EXOR

OR

HA

OR

HalfAdder
AND EXOR

=HalfAdder

HalfAdder

Figure 4.4: Refinement operator for the example of a FullAdder

32 Chapter 4. The Graphical Editor

With this method of discrete hierarchy we still have problems in describing

very large circuits. Moreover we can only specify fixed realizations of a

circuit. In order to get a more flexible specification level we now allow pa-

rameterizable net variables and bicategorial expressions. On the one hand

this gives us the possibility to describe whole families of circuits with one

fixed set of net equations. On the other hand we can setup recursive specifi-

cations which lead to very short and handy descriptions for regular circuits,

such as adders, multipliers, sorting networks or memory, etc.

The following example demonstrates the use of parameterized net variables:

Tree[0] = EXOR

Tree[i] = (Tree[i− 1] eTree[i− 1]) eOR

This recursive system of net equations has a free parameter i which can be

set to an arbitrary nonnegative integer value. If for example we set i = 3,

then we can apply the expansion functor from above, until we get a bicat-

egorial expression which only contains basic gates as active components.

This will take the following steps:

Tree [3] = (Tree [2] eTree[2]) eOR

= ((Tree [1] eTree [1]) eOR e(Tree [1] eTree[1]) eOR) eOR

= (((Tree [0] eTree [0]) eOR e(Tree[0] eTree[0]) eOR) eOR e
((Tree [0] eTree [0]) eOR e(Tree [0] eTree[0]) eOR) eOR) eOR

= (((EXOR eEXOR) eOR e(EXOR eEXOR) eOR) eOR e
((EXOR eEXOR) eOR e(EXOR eEXOR) eOR) eOR) eOR

The graphical representation of Tree[3] is given in figure 4.5. This simple

system of two net equations describes every binary comparison tree for two

operands of bit–length 2i. The result of the circuit is 1, if the two binary

numbers differ in at least one bit.

Section 4.2 Basic Concepts of CADIC 33

EXOR

OR

OR

OR

OROROROR

EXOREXOREXOR EXOR EXOREXOREXOR

Tree[3]

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

a = b

Figure 4.5: Expanded representation of the binary comparison tree Tree[3]

This small example shows that the method of recursive net equation sys-

tems enables the designer to specify even large circuits by a small number

of equations. But the input via bicategorial expressions has some disadvan-

tages:

2 the designer creates such an expression after drawing the net on a sheet

of paper and then slicing it according to the rules of the calculus.

2 for small nets he can already get uncomfortably large expressions.

2 short modifications in the circuit may cause tremendous changes in

the expressions. Usually they are newly calculated which tends not to

be an interactive way of working.

2 the initial input may contain a lot of errors, especially if the circuit

contains complex wiring components.

2 the communication with other design tools is difficult, because the

designer has to setup the relation between the calculated results and

the given input himself.

34 Chapter 4. The Graphical Editor

To overcome these disadvantages the CADIC system has a graphical input

tool, a schematic editor which supports all the features of the underlying

mathematical calculus, especially the parameterized and recursive design

methodology. In the following sections of this chapter we will introduce the

work with this graphical editor of CADIC . We begin our session with some

small examples which will show you the basic functions of the editor. During

the main part of the chapter we will design an arithmetical circuit as a real-

istic example to demonstrate, how the user can setup flexible specifications

of circuits.

4.3 Getting Started

If you have followed the instructions given in chapter 3 , then you will; 3

see the graphical user interface with its components. In the menuline the

topmost menu is displayed which contains a push button for every tool that

is integrated in the current graphical environment. From this menu you

should select the entry Schematic Editor in order to activate the submenu

for the graphical editor. After pressing the left mouse button the contents of

the menuline changes and the functions of the graphical editor are displayed.

These functions are grouped according to the objects they will affect.

In the following design examples we will demonstrate the use of the most im-

portant editor functions step by step. A user manual for all editor functions

is given in chapter 12.; 12

4.4 Graphical Specification

From the functional description of a circuit we will now directly derive the

schematic inputs for the graphical editor of CADIC . The procedure of

entering a schematic usually takes the following basic steps:

2 open a new schematic sheet with an appropriate name and parameter

list

2 select and manipulate basic cells or parameterized macros

Section 4.5 The First Design: A HalfAdder 35

2 connect the cells, macros and the schematic border with wires

2 enter and place comments for the documentation of the schematic

2 save the schematic

The sequence of these steps can be changed at some positions. You can

enter some cells, connect them with wires, add new cells, save the schematic

during the session, etc. Especially you can delete cells, wires or comments

in the case of mistakes.

In the following sections we will concentrate on these basic steps of drawing

a schematic. During this sample session you will especially learn how to

open and save schematics, enter, resize, copy, move, rotate and rename basic

cells and parameterized macros, enter and delete wires, enter comments and

enter additional equations about wire variables. Beside these operations the

graphical editor offers more functionality, which will be explained in detail

in chapter 12.

4.5 The First Design: A HalfAdder

In our first design we want to show the graphical input for the halfadder

given by the equation

HalfAdder = (e e1
b
1)

e(1
b
1

e e e) e(AND eEXOR)

Opening a New Schematic

The first step we have to do is to open a new schematic sheet. This is done; 12.1,12.2.1

by selecting the entry Load from the submenu -Schematics-. You will see

a table of the schematics in the directory given by the environment variable

DAGDIR. At this point of the session this table will only contain a single

entry labelled **** New **** as it is shown in figure 4.6. Select this entry

by moving the pointer onto it and press the left mouse button as soon as it

is highlighted. After that a text input window will appear on your screen

and you have to specify the name of the new schematic.

36 Chapter 4. The Graphical Editor

Please enter New Schematic Name: <HalfAdder >

Type in the text HalfAdder and press the return key. Then you have opened

a new schematic which will first be given by an empty frame. Note, that the

name in the upper right field of your environment has changed to HalfAdder

which is the name of the new schematic.

Entering Basic Cells

In the next step we select the appropriate cells for the specification of the; 12.1,12.3.1

halfadder and place them within the given frame. For this purpose select the

entry Enter from the submenu -Cells- in the menuline. After activating

this point with the left mouse button, you will see three new windows upon

your working area. Each of these windows contains a list of cells of a certain

type (c.f. figure 4.7).

Figure 4.6: Dialog for opening a new schematic

In the upmost window you see the names of the cells in the basic cell library

which are located in the directory described by the environment variable

Section 4.5 The First Design: A HalfAdder 37

CELLDIR. The second window shows the names of macro cells which have

been defined by a previous input of a schematic. At this point of the session

the macro list is empty. In the third window the names of the parameterized

macro cells are listed which have been used during the current session.

Actually this list contains one single entry labelled --- New Cell ---.

Figure 4.7: Dialogs for cell and macro selection

If you look at the equation for the halfadder, the first cell we need is and

AND gate which computes the carry of the two inputs. Move the pointer

onto the name AND2 within the first window and press the left mouse button

if the name is highlighted. The cell list windows will be closed and you see

the shape of an AND gate in the workarea which will follow the pointer

motion within the workarea. Now you can pick the right position to place

it (c.f. figure 4.8).

If you drop the gate by pressing the left mouse button, it is redrawn with

two input pins at its northern border and an output pin at its southern

border, indicated by green points. The pins are labelled with the names I1,

38 Chapter 4. The Graphical Editor

I2 and O1. Small arrows indicate the directions of the pins.

The gate has two more pins called VDD and VSS (blue points), which repre-

sent the power/ground supply ports. These pins are uninteresting for the

logical function of our circuit and we will not use them during the editor

session. The power supply nets which will connect all these supply pins are

automatically generated by an appropriate tool (c.f. chapter 8).; 8

Figure 4.8: Placement of the basic cells for HalfAdder

After the placement the cell list windows are popped up again in order

to select another gate. Now move the pointer to the entry XOR2 to get an

EXOR gate for two inputs. We need this gate to compute the sum modulo 2

of the two input bits, so place it right beside the AND gate as it is shown

in figure 4.8. Because this is the last gate we need for the halfadder, you

should abort the cell selection mode by pressing the right mouse button

within one of the three list windows.

Section 4.5 The First Design: A HalfAdder 39

Entering Wires

To draw the wiring of HalfAdder select the entry Enter from the -Wires-; 12.4.1

submenu. First we connect the output pins of the two gates directly with

the southern border of the schematic. Move the pointer near to the output

pin O1 of the AND2 gate. If the distance to the pin is less than a certain

tolerance value the crosshair cursor will snap to the pin and you can fix

the start point of the wire by pressing the left mouse button. Now move

vertically down to the southern border of the schematic. During the pointer

motion you will notice a grey rubberbanding line following the pointer. This

line indicates the current connection which will be established, if you press

the left mouse button to fix the end point of the wire. In some cases the

rubberbanding line will dissappear in order to show you that the current

connection is illegal. For example this is the case, if the connection would

cut a cell or the schematic border. Pressing the left mouse button with an

invisible rubberband would result in nothing but the selection of a new start

point.

If you move the pointer near to the southern border of the schematic it will

snap again to the border line and you can fix the end point by pressing the

left mouse button. The newly created wire is established and redrawn as a

yellow connection between the pin and the schematic border. In this case

of connecting a pin of a basic cell the width of the wire is automatically set

to 1. Later you will see that the width of a wire can also be set to flexible

values.

After connecting the output pin O1 of the XOR2 gate with the southern

border of the schematic we turn to the input pins. Connect the left input

I1 of the AND2 gate as well as the right input I2 of the XOR2 gate directly

with the northern border of the schematic. These two wires represent the

inputs a and b of the halfadder. As shown above we have to feed these

values into both the AND2 and XOR2 gate, i.e. we branch the wires and

connect them with the appropriate input pins. To do this move the pointer

onto the left wire. You can notice that it snaps to the wire if the distance

is less than a certain tolerance value. Press the left mouse button to fix

40 Chapter 4. The Graphical Editor

Figure 4.9: Wiring for HalfAdder

the start point and move the pointer to the left input pin of the XOR2 gate.

The connection is indicated by a rubberbanding line between the start point

and the current position of the pointer. If you select an illegal position the

rubberbanding line will disappear. If you have setup the right connection

to the left input of the XOR2 gate press the left mouse button to fix the

end point of the wire. The yellow dot at the start point of the new wire

indicates a branching of the previous vertical wire. Implicitly the branch

node is considered to be a basic operation in the underlying calculus. In

this special case we have entered an east–branch.

In the same way you can connect the right vertical wire with the right input

pin of the AND2 gate. You should have entered a schematic similar to that

shown in figure 4.9. Terminate the enter wire mode by pressing the right

mouse button two times (the first time you press the right mouse terminates

the selection of an end point and turns to the selection of a new start point).

Section 4.6 Going into Hierarchy: A FullAdder 41

Saving the Schematic

Save the schematic by selecting the entry Save from the -Schematics-; 12.2.2

submenu. The graphical input is then written to the file HalfAdder.dag in

the directory given by the environment variable DAGDIR.

4.6 Going into Hierarchy: A FullAdder

In this section we will specify a small circuit which consists of two hierarchy

levels. According to the description from above

FullAdder = (HalfAdder e1
b
1) e(1

b
1

eHalfAdder) e(OR e1
b
1)

will we build a fulladder with the help of the halfadder from the previous

section.

Opening a New Schematic

We call this new schematic FullAdder and open it by following the steps; 12.2.1

in section 4.5. Note that the list of schematics now contains the entry

HalfAdder beside the position of **** New ****. After selecting a new

schematic you should type in the name FullAdder and press return. Now

we have created an empty frame for entering the fulladder design.

Entering Macro Cells

In the next step we select the appropriate cells for the specification of the; 12.1,12.3.1

fulladder and place them within the given frame. For this purpose select the

entry Enter from the submenu -Cells- in the menuline. As shown above

we need two instances of a halfadder together with an instance of an OR

gate. The halfadder is described by its own schematic. Therefore you will

now see an entry HalfAdder in the second cell selection window. This is

the window for discrete macro cells, i.e. macro cells which do not depend

on any free parameter.

Move the pointer onto this entry and select it by pressing the left mouse

button after it is highlighted. Then the cell selection windows are popped

42 Chapter 4. The Graphical Editor

down and you notice a cell of a certain size following the pointer motion

within the workarea. Place it as it is shown in figure 4.11 and fix the position

by pressing the left mouse button. After that the cell selection windows are

popped up again in order to choose another cell.

Select a second instance of the halfadder and place it lower right to the

first one (c.f. figure 4.10). Finally select an OR gate (OR2) from the first

cell selection window which contains the list of basic cells. Place it at the

position shown in figure 4.10 below the second half adder.

Now terminate the cell selection mode by pressing the right mouse button

within one of the selection windows.

Figure 4.10: Using the macro HalfAdder to construct a fulladder

Before we continue you should take a short look at the macro cells and

compare them to the basic cells. You notice that the macro HalfAdder has

two pin connectors at its northern border and southern border. These pins

correspond to the wires we have connected with the schematic borders of

the corresponding schematic for the halfadder. The position of the pins is

Section 4.6 Going into Hierarchy: A FullAdder 43

relative to the position of the wire connection at the schematic frame.

In contrary to the basic cells there are no pin names shown for the macro

cells. This does not mean that the pin connectors have no names, but they

are automatically generated and omitted for reasons of simplicity. The pin

names of macro cells contain the exact position of the corresponding wire.

For example the upper left pin of HalfAdder has the name n[0,0] which

means that it belongs to the northern border and represents the interval of

wires from 0 to 0 inclusively, i.e. it represents the first wire connected to

the northern border and this wire has the width 1. For the conventions of; 12.3.1

naming pins of macro cells see also 12.3.1.

Entering Wires

To draw the wiring of FullAdder select the entry Enter from the -Wires-; 12.4.1

submenu. First we connect the output pin of the OR gate and the right

output pin (s[1,1]) of the lower halfadder macro directly with the southern

border of the schematic. Move the pointer near to the output pin of the

OR2 gate. If the distance to the pin is less than a certain tolerance value the

crosshair will snap to the pin and you can fix the start point of the wire by

pressing the left mouse button. Move vertically to the southern border of

the schematic, dragging the grey rubberbanding line, and fix the end point

in the same way. As mentioned above the width of this wire is automatically

set to 1.

Now move the pointer to the right pin at the southern border of the lower

halfadder and fix the start point with the left mouse button. Draw the

rubberbanding line vertically down to the southern schematic border and

fix the end point. Because the pin of the macro cell represents one single

binary value, the width of this wire is also automatically set to 1.

After connecting these output pins with the southern border of the

schematic we turn to the input pins of the fulladder. Connect the two

input pins of the upper left halfadder as well as the right input pin of the

lower right halfadder directly with the northern schematic border. These

three wires represent the inputs of the fulladder.

44 Chapter 4. The Graphical Editor

Figure 4.11: Wiring of FullAdder and creating a knee for a connection

between two pins

According to the sketch from figure 4.4 we still have to connect the right

output pin of the left halfadder with the left input pin of the right halfadder

and the left output pins of both halfadders with the input pins of the OR

gate.

To do this wiring move the pointer onto the right output pin of the left

halfadder. You can notice that it snaps to the pin if the distance is less

than a certain tolerance value. Press the left mouse button to fix the start

point and move the pointer vertically downwards. The actual connection is

indicated by the rubberbanding line between the start point and the current

position of the pointer. If you select an illegal position the rubberbanding

line will disappear. This is the case if the chosen connection intersects a cell

or moves along an already existing wire or the border of the schematic.

In our case we first create a small vertical wire, from which we will complete

the connection between the two pins. Fix the end point as it is shown in

Section 4.6 Going into Hierarchy: A FullAdder 45

figure 4.12. This end point now serves as the start point for the next wire,

i.e. just move the pointer onto the left input pin of the right half adder.

You will notice that the rubberbanding line will automatically create a knee

for the proper connection. Fix the end point at the left input pin of the

halfadder by pressing the left mouse button.

Figure 4.12: Final wiring for FullAdder

We also apply this method of connecting two pins for the remaining two

wires between the left output pins of the halfadders and the input pins of

the OR gate. Finally you can terminate the enter wire mode by pressing

the right mouse button two times within the workarea.

Saving the Schematic

Save the schematic by selecting the entry Save from the -Schematics-; 12.2.2

submenu. The graphical input is then written to the file FullAdder.dag in

the directory given by the environment variable DAGDIR.

46 Chapter 4. The Graphical Editor

4.7 Parameterization: An n Bit Comparison Tree

In this section we will show how you can setup a parameterized specification

of a circuit. In contrast to the previous two sections, where we designed a

discrete hierarchical circuit, we will now specify a whole family of circuits.

The advantage of CADIC is that we can do this with the help of a finite

number of graphical inputs.

The parameterization is done with the help of recursive equations, i.e. we

use a regularity in the circuit structure to get a compact description (a

small number of inputs). Normally a recursive specification consists of basic

equations which serve as end conditions of a recursion. These are equations,

where at least one parameter of the subcircuit is given by a fixed nonnegative

integer value. You can have more than one basic equation for the same

subcircuit, for example if there are different basic elements for different

initial parameter values. The recursion itself is given by so called general

equations. These are equations, where all parameters are free. For each

subcircuit there may exist only one general equations. If this is not the case

the refinement operation would ambiguous.

The example of the n bit comparison tree, we will show in this section, can

be described by two parameterized equations:

Tree[0] = EXOR

Tree[i] = (Tree[i− 1] eTree[i− 1]) eOR

The first equation is a basic equation which serves as the end of the recur-

sion. It handles the case that we have to compare two single bits a0 and

b0 (n = 20). The second equation is the general recursive equation, where

we reduce the comparison of two n = 2i bit numbers to the comparison of

the upper and lower halfs and combining these intermediate results by an

OR gate. In the following sections we will now show, how you can enter a

schematic input for these two equations.

Section 4.7 Parameterization: An n Bit Comparison Tree 47

4.7.1 Basic Equation for the n Bit Comparison Tree

Opening a New Schematic

We begin with the basic equation for the recursive description of the n bit; 12.2.1

comparison tree. This will be a compare subcircuit for n = 20 bit operands.

Therefore we call this schematic Tree[0] which will be opened following the

steps in section 4.5. Note that the list of schematics now contains the entries

HalfAdder and FullAdder from our previous work beside the position of

**** New ****. After selecting a new schematic you should type in the

name Tree[0] and press return.

Please enter New Schematic Name: <Tree[0] >

The name of the new schematic is Tree. The square brackets introduce a list

of parameters which can be used during the specification of the schematic.

In this case we have one single parameter which is set to the constant value

0. In general you can use up to 32 parameters for one schematic.; 12.1

Entering Basic Cells

In the next step we select the appropriate cells for the basic compare element; 12.1,12.3.1

and place them within the given frame. For this purpose select the entry

Enter from the submenu -Cells- in the menuline. After picking this point

with the left mouse button, you will see the three cell selection windows

upon your working area (c.f. figure 4.7).

The task to compare two single bits a0 and b0 is trivial and can be solved

with the help of an EXOR gate. The result of this gate is 1, if the input

bits are different, and 0, if they are equal.

Select the entry XOR2 from the first cell selection window and press the left

mouse button, if it is highlighted. Move the gate into the middle of the

working area and drop it there by pressing the left mouse button again.

Because this is the only cell we need in this schematic you can terminate

the cell selection by pressing the right mouse button within one of three

selection windows.

48 Chapter 4. The Graphical Editor

Figure 4.13: The basic equation for the n bit comparison tree

Entering Wires

To draw the wiring of Tree[0] select the entry Enter from the -Wires-; 12.4.1

submenu. The wiring in this case is very simple. We just have to connect

the pins of the EXOR gate with the corresponding schematic borders. Move

the pointer near to the output pin of the XOR2 gate. If the distance to the pin

is less than a certain tolerance value the crosshair will snap to the pin and

you can fix the start point of the wire by pressing the left mouse button.

Move vertically to the southern border of the schematic and fix the end

point in the same way. In the same way connect the input pins of the gate

with the northern border of the schematic. The width of all three wires is

automatically set to 1.

The schematic should look like that shown in figure 4.13. Finally terminate

the enter wire mode by pressing the right mouse button twice within the

working area.

Section 4.7 Parameterization: An n Bit Comparison Tree 49

Saving the Schematic

Save the schematic by selecting the entry Save from the -Schematics-; 12.2.2

submenu. The graphical input is then written to the file Tree[0].dag in

the directory given by the environment variable DAGDIR.

4.7.2 General Equation for the n Bit Comparison Tree

Opening a New Schematic

We will now enter the recursive equation of the n bit comparison tree, for; 12.1,12.2.1

which we first have to open a new schematic sheet. After the selection of the

entry Load from the submenu -Schematics- you should type in Tree[n].

As in the case of the basic equation the square brackets introduce the pa-

rameter list of the schematic. Here we have one free parameter n which can

be used within the elements of the schematic as macros cells and wires.

You may use any legal identifier as the name for a parameter. The syntacti-

cal structure of an identifier is defined as you may know it from programming

languages.; 12.1

Entering and Manipulating Cells

In our recursive description we reduce the comparison of two 2n bit num-; 12.1,12.3.1

bers to the parallel comparison of the upper 2n−1 and lower 2n−1 bits of

the numbers. This means that we need two instances Tree[n-1] of 2n−1

comparison trees within Tree[n].

In this next step we select the appropriate cells for the recursive specification

of the comparison tree and place them within the given frame. For this

purpose select the entry Enter from the submenu -Cells- in the menuline.

The input of the parameterized macros for the 2n−1 bit comparison trees

is done within the third of the cell selection windows. At this point of

the session this windows contains a single entry --- New Cell --- for the

definition of a new parameterized macro cell. Select this in the same way

50 Chapter 4. The Graphical Editor

as you have selected to open a new schematic in order to define a new

parameterized macro cell. After hitting the left mouse button you will be

prompted to enter a new macro name.

Please enter Parameterized Name: <Tree[n-1] >

Type in Tree[n-1] to specify a macro for a comparison tree for 2n−1 bit

numbers.

Note that you can only use the parameters of the schematic to build arith-

metic expressions for the parameters of the macro cells. Try to specify a

cellname Tree[k-1] and the system will respond with the message

! Error ! "Tree[k-1]" uses illegal parameter "k"

The syntax diagrams for the expressions allowed as parameters of these

macro cells are given in chapter 12.

After the specification of a correct cellname you will see the graphical rep-

resentation of the macro, i.e. a red bounded box with the cellname in its

center. You can move this symbol inside the frame and place it at the de-

sired position by clicking the left mouse button. The macro can only be

placed on legal positions, i.e. there must not be an overlapping with other

macros, wires or the border of the schematic. Try to move the macro onto

the schematic frame and you will notice a change of its colour from red to

grey. This change indicates the selection of an illegal position. Now place

the macro onto the position you see in figure 4.21.

The size of the macro is chosen by default, because the selected param-

eterized macro represents a whole class of macros. Its exact size can be

determined, if the values for the parameters are known. For the abstract

specification level of the editor the size of a cell or a macro is not important.

In order to setup a comfortable schematic which is easy to understand, we

will now resize the macro, such that it gives us an impression of the relative

sizes. Before we can perform the resize operation, we have to terminate the

enter cell function (third mouse button in one of the cell selection windows).

For the resize operation push the button Resize in the -Cells- submenu.; 12.3.3

Section 4.7 Parameterization: An n Bit Comparison Tree 51

Figure 4.14: Placing a parameterized macro cell for the recursive specifica-

tion of the comparison tree

Then you are in the cell selection mode and can pick the desired cell within

the workarea. Move the pointer onto the workarea and you will see the

macro being highlighted (its colour changes from grey to blue). In cell

selection mode always the macro nearest to the pointer will be highlightet,

you need not be inside it. At this point of our session cell selection is trivial

because we only have a single macro within the workarea. The selection is

done by clicking the left mouse button.

After the selection you can draw a rubberbanding frame which is anchored

in the upper left corner of the macro and represents its new size. During

the resize operation you need not hold down the left button. Just move the

pointer to the desired position and confirm the new size by clicking the left

mouse button or cancel the operation with the right mouse button (you will

be returned to cell selection mode).

If you confirm a new size for the macro you will be in cell placement mode.

52 Chapter 4. The Graphical Editor

Figure 4.15: Resizing a parameterized macro cell

The reason for this are possible overlappings of the resized macro with

its neighbours or with wires. You have to choose a new position for it

which is only possible within the given constraints (i.e. no overlapping with

macros, wires or the border). Sometimes it can happen that you have no

enough free space in your workarea to perform the resize operation without

creating overlaps with other cells. In this case you should terminate the

resize operation and enlarge the workarea with the help of the functions

from the submenu -Views- which are explained in section 12.7.1.; 12.7.1

Move the resized macro to the previous position and confirm it with the

left mouse button. Now your schematic should look like that shown in

figure 4.15.

As described above the 2n bit comparison tree simultaneously compares the; 12.3.4

upper 2n−1 and the lower 2n−1 bits. We now have positioned the macro

Tree[n-1] for the upper half of the operands. A second instance of this

macro will be needed for the lower half. We could create this instance by

Section 4.7 Parameterization: An n Bit Comparison Tree 53

following the above steps (selecting a parameterized macro, placing and

resizing it). But the editor offers a much simplier way to perform this

operation. Push the entry Copy from the -Cells- submenu. This enables

the cell selection mode where you can select an instance to be doubled. Press

the left mouse button and you will get a second macro labelled Tree[n-1]

which has the same size as our first macro. Place it within the workarea

in order to have the schematic look like that in figure 4.16. During the

placement operation you can watch the macro changing its colour, if it is

placed on the first Tree[n-1] or on the border. In this case you cannot

drop it, i.e. pressing the left mouse button has no effect. You can cancel

the operation by pressing the right mouse button. The copy will dissappear

and you will return to cell selection mode. Pressing the right mouse button

again will terminate the whole copy operation.

Figure 4.16: Creating a copy of an exisiting macro cell

Finally we need an OR gate to combine the results of the two 2n−1 com-; 12.1,12.3.1

parison trees. For this purpose select the entry Enter from the submenu

-Cells- in the menuline again. Select an OR gate (OR2) from the first cell

54 Chapter 4. The Graphical Editor

selection window which contains the list of basic cells. Place it at the posi-

tion shown in figure 4.17 below the two 2n−1 bit comparison trees, such that

we get a tree–like structure. Now terminate the enter cell mode by pressing

the right mouse button within one of the three selection windows.

Entering Wires

In this section we show how to connect the modules with wires. The main; 12.4.1

point you will observe during this procedure is that because of the parame-

terized description the lines drawn will have variable widths. The width of

a line specifies the number of parallel wires contained in this bundle.

We start with the left Tree[n-1] which compares the upper half of the

bits of the the operands. First select the point Enter from the -Wires-

submenu and move the pointer into the workarea. The cursor has changed

to a crosshair and you can select the start point for a new wire. Move the

pointer to the northern side of the left Tree[n-1] macro and position it to

the middle of this side. If you move the pointer slowly toward the border

of the macro you can observe that it snaps onto the border, if the distance

becomes less than a certain tolerance value. This indicates that you have

selected a special position within the schematic. The same behaviour can be

noticed if you reach the frame, a pin of a cell or another wire. If the pointer

has snapped to the border of the macro press the left mouse button to fix

the start point of the new wire. Now move the pointer vertically towards

the northern border of the schematic. You will see that it is followed by

a grey rubberband line which indicates the position of the new wire. The

cursor snaps to the border if the distance is small enough.

Now you can fix the end point of the wire by pressing the left mouse button

again. The grey rubberband line will disappear and you will be prompted

to enter the width of this wire.

Please enter Wire Width: <2^n >

As mentioned above the width of a wire represents the number of parallel

lines within this bundle. In our case this wire describes the input line to

Section 4.7 Parameterization: An n Bit Comparison Tree 55

Figure 4.17: Entering a wire of parameterized width

the first comparison tree for the upper half of the operands. The width of

a single operand is given by the parameter 2n. The left Tree[n] gets two

operands of length 2n−1, i.e. the number of single wires is 2n which you can

type in in the form 2^n. You will see the new wire as a yellow line from the

border of the Tree[n-1] to the border of the schematic. In the middle of

the wire you can notice the description of its width annotated by a small

diagonal line with the appropriate expression (c.f. figure 4.18).

Note that you can only use the parameters of the schematic to build arith-

metic expressions or wire variables. The exact syntax for these expressions

is given by the diagrams in appendix.; 12.1

We proceed with the other modules. The right instance of Tree[n-1] will

also be connected with the northern border of the schematic. You can draw

this wire in the same way as you did for the left Tree[n-1]. Type 2n̂ for

its width in order to denote that it describes the wires for the lower parts

of the operands.

56 Chapter 4. The Graphical Editor

Now we turn to the southern borders of the two Tree[n-1]. The output

of both has to be connected with the input pins of the OR gate. Move the

pointer near to the middle of the southern border of the left Tree[n-1]

and fix the start point of the new wire. Because the connection to the

input pin of the OR gate has to be drawn with two knees, we first create

a small vertical wire segment. After fixing the end point of this segment

you are prompted to enter the width of this wire, because the system can

not automatically determine the width of this wire (it is connected to a

parameterized macro cell).

Please enter Wire Width: <1 >

Enter 1 because the result of the 2n−1 bit comparison tree is a single binary

value. Now continue the drawing of this wire by moving the pointer to the

left input pin of the OR gate. The rubberbanding line will automatically

create the second knee for the correct connection. If you fix the end point

you are not prompted for the width of this wire, because you continued an

already existing wire.

The entering of the wire width 1 from above can be avoided, if we start

the wire at the input pin of the OR gate as we will do this for the second

Tree[n-1]. Fix the start point at the right input pin of OR2 and move the

pointer a short distance upwards. If you fix an end point here the wire

automatically gets the width 1. Now continue the wire to the middle of the

southern border of the right Tree[n-1]. Press the left mouse button again

and fix the end point of the connection.

Finally connect the output pin of OR2 with the southern border of the

schematic as the output of the whole comparison tree Tree[n].

To leave the enter wire mode press the right mouse button twice. The first

button press will deactivate the selection of a wire end point and return to

the selection of new start point. The second button press will abort the

enter wire mode and return to the menu selection mode.

Section 4.8 Design of an n Bit Conditional Sum Adder 57

Figure 4.18: Final wiring for the 2n bit comparison tree

Saving a Schematic

Now that we have drawn all elements of the general recursive equation for; 12.2.2

the 2n bit comparison tree we must save the schematic. This is simply

done by selecting the entry Save from the -Schematics- submenu. The

schematic will be saved to the file Tree[n].dag in the directory given by

the environment variable DAGDIR.

4.8 Design of an n Bit Conditional Sum Adder

After the introduction of basic editor operations and specification methods,

we will now enter a larger design. By the example of an addition circuit we

will show, how the designer can set up short and handy specifications for

often used components of larger designs such as microprocessors. He can

perform that by using recursive systems of schematic equations.

58 Chapter 4. The Graphical Editor

4.8.1 Basic Concepts of the Conditional Sum Adder

Simple algorithms for addition which e.g. use the well–known carry ripple

principle, have the disadvantage of worst (linear) time behaviour. If you

need high performance, you have to consider other, more complex structures

which will guarantee a better (logarithmic) runtime. We will show now that

this is possible by using recursive definitions which will easily mirror the

basic principles of the underlying algorithm.

A nice idea for parallelizing addition was given by Sklansky in 1960 ([Skl60])

and is well–known as conditional sum adder. This adder simultaneously

computes the sum as well as the sum plus one for the leading parts of the

two operands. This is done at the same time as the sum of the lower parts

is generated. If the carry of the lower summation is known, you can select

the right version of the sum of the upper parts. If this selection can be done

in a small amount of time, i.e. by a subcircuit of constant depth, and if we

apply this scheme recursively to the upper and lower part of the operands,

we get an addition circuit with logrithmic depth, where the operands are

split in parts of equal size.

Let a = numn(an−1 . . . a0) and b = numn(bn−1 . . . b0) be two n bit binary

numbers. For simplicity we only consider the case n = 2k. Then

aH := numn
2
(an−1 . . . an

2
), aL := numn

2
(an

2
−1 . . . a0)

denote the n
2

bit binary numbers which are represented by the upper (H)

and lower (L) half of the operand a. In the same way we define bH and bL.

Then it holds:

a + b = (2
n
2 aH + aL) + (2

n
2 bH + bL)

= 2
n
2 (aH + bH) + (aL + bL)

= 2
n
2 (aH + bH) + 2

n
2 ((aL + bL)÷ 2

n
2) + (aL + bL) mod 2

n
2

= 2
n
2 (aH + bH + (aL + bL)÷ 2

n
2) + (aL + bL) mod 2

n
2

=

{
2

n
2 (aH + bH) + (aL + bL) mod 2

n
2 if (aL + bL)÷ 2

n
2 = 0

2
n
2 (aH + bH + 1) + (aL + bL) mod 2

n
2 if (aL + bL)÷ 2

n
2 = 1

and

a + b + 1 =

{
2

n
2 (aH + bH) + (aL + bL + 1) mod 2

n
2 if (aL + bL + 1)÷ 2

n
2 = 0

2
n
2 (aH + bH + 1) + (aL + bL + 1) mod 2

n
2 if (aL + bL + 1)÷ 2

n
2 = 1

Section 4.8 Design of an n Bit Conditional Sum Adder 59

Because (aL + bL) mod 2
n
2 (resp. (aL + bL + 1) mod 2

n
2) are the n

2
lowest

bits of the binary representation of the sum aL + bL (resp. aL + bL + 1) and

(aL + bL) ÷ 2
n
2 (resp. (aL + bL + 1) ÷ 2

n
2) are the carries of aL + bL (resp.

aL + bL + 1) we get an arrangement of two n
2

bit conditional sum adders.

The selection subcircuit for the leading parts of the sum can be constructed

by a row of multiplexers which are controlled by the two carry values. This

scheme is applied recursively to the two n
2

bit adders and leads to a splitting

of the operands in very small parts. The most natural input sequence for the

whole conditional sum adder therefore is an−1,bn−1,. . .,ai,bi,. . .,a0,b0. With

the same considerations the sequence of the output values of the adder are

the bits of the sum plus one and the sum in alternating order . . .,(a+b+1)i,

(a + b)i,. . .,(a + b + 1)0,(a + b)0.

Because these input and output sequences are not very intuitive for check-

ing the correctness of our design we will specify two wiring subcircuits

(sections 4.8.6,4.8.7, 4.8.8 and 4.8.9) for more convenient input/output be-

haviour of the conditional sum adder. If you only want to get a first glance

at working with the graphical editor you can skip these sections. It is pos-

sible to read these sections later in order to complete the specification. The

main part of the adder will be specified in sections 4.8.2,4.8.3,4.8.4 and 4.8.5

where the most important functions of the graphical editor are explained in

detail.

4.8.2 General Equation for an n Bit Conditional Sum Adder

Opening a New Schematic

We will now start with the recursive equation of an n bit conditional sum; 12.1,12.2.1

adder, for which we first have to open a new schematic sheet. This is done

by selecting the entry Load from the submenu -Schematics-. You will see

a table of the schematics in the directory given by the environment variable

DAGDIR.

At this point of the session this table will only contain the entry labelled

60 Chapter 4. The Graphical Editor

Figure 4.19: Dialog for opening a new schematic

**** New **** beside the names of our designs from the previous sections

as it is shown in figure 4.19. Select this entry by moving the pointer onto

it and press the left mouse button as soon as it is highlighted. After that a

text input window will appear on your screen and you have to specify the

name of the new schematic. Type in CSA[n] and press the return key.

You have opened a new schematic which will first be given by an empty

frame. Note, that the name in the upper left field of your environment has

changed to CSA[n]. The name of the schematic is CSA. The square brackets

introduce a list of parameters which can be used during the specification

of the schematics. These parameters can appear in subcircuits or in the

wiring. In our case we have a single parameter n, but in general you can

use a list of up to 32 parameters.

Entering and Manipulating Cells

In the next step we select the appropriate cells for the recursive specification; 12.1,12.3.1

Section 4.8 Design of an n Bit Conditional Sum Adder 61

of the conditional sum adder and place them within the given frame. For this

purpose select the entry Enter from the submenu -Cells- in the menuline.

After picking this point with the left mouse button, you will see three new

windows upon your working area. Each of these windows contains a list of

cells of a certain type (c.f. figure 4.20).

Figure 4.20: Dialogs for cell and macro selection

In the upmost window you see the names of the cells in the basic cell library

which are located in the directory described by the environment variable

CELLDIR. The second window shows the names of macro cells which have

been defined by a previous input of a schematic. The system only shows such

macros that are fixed, i.e. which do not depend on any formal parameters.

This is the reason, why the macro Tree[0] appears in this list and the

parameterized macro Tree[n] does not. In the third window the names of

the parameterized macro cells are listed which have been used during the

current session. Actually this list contains the entry labelled --- New Cell

--- beside the previously specified parameterized macro Tree[n-1]. Select

the first one in the same way as you have selected to open a new schematic

62 Chapter 4. The Graphical Editor

in order to define a new parameterized macro cell. After hitting the left

mouse button you will be prompted to enter a new macro name. Type in

CSA[n/2] to specify a macro for a conditional sum adder for n
2

bit operands.

Note that you can only use the parameters of the schematic to build arith-

metic expressions for the parameters of the macro cells. Try to specify a

cellname CSA[k/2] and the system will respond with the message

! Error ! "CSA[k/2]" uses illegal parameter "k"

The syntax diagrams for the expressions allowed as parameters of these

macro cells are given in chapter 12.

After the specification of a correct cellname you will see the graphical rep-

resentation of the macro, i.e. a red bounded box with the cellname in its

center. You can move this symbol inside the frame and place it at the de-

sired position by clicking the left mouse button. The macro can only be

placed on legal positions, i.e. there must not be an overlapping with other

macros, wires or the border of the schematic. Try to move the macro onto

the schematic frame and you will notice a change of its colour from red to

grey. This change indicates the selection of an illegal position. Put the

macro onto the position you see in figure 4.21.

The size of the macro is chosen by default, because the selected param-

eterized macro represents a whole class of macros. Its exact size can be

determined, if the values for the parameters are known. For the abstract

specification level of the editor the size of a cell or a macro is not important.

In order to setup a comfortable schematic which is easy to understand, we

will now resize the macro. This gives an impression of the relative sizes

of the macros. Before we can resize the macro, we have to terminate the

enter cell function. After you have placed the macro the three cell selection

windows are popped up again in order to select another cell or macro. You

can abort this function by pressing the right mouse button within one of

the three windows.

For the resize operation push the button Resize in the -Cells- submenu.; 12.3.3

Then you are in the cell selection mode and can pick the desired cell within

Section 4.8 Design of an n Bit Conditional Sum Adder 63

Figure 4.21: Placing a parameterized macro cell for the recursive specifica-

tion of the conditional sum adder

the workarea. Move the pointer onto the workarea and you will see the

macro being highlightet (its colour changes from grey to blue). In cell

selection mode always the macro nearest to the pointer will be highlighted,

you need not be inside it. At this point of our session cell selection is trivial

because we only have a single macro within the workarea. The selection is

done by clicking the left mouse button.

After the selection you can draw a rubberbanding frame which is anchored

in the upper left corner of the macro and represents its new size. During

the resize operation you need not hold down the left button. Just move the

pointer to the desired position and confirm the new size by clicking the left

mouse button or cancel the operation with the right mouse button (you will

be returned to cell selection mode).

If you confirm a new size for the macro you will be in cell placement mode.

The reason for this are possible overlappings of the resized macro with its

64 Chapter 4. The Graphical Editor

Figure 4.22: Resizing a parameterized macro cell

neighbours or with wires. You have to choose a new position for it which is

only possible within the given constraints (i.e. no overlapping with macros,

wires or the border). Move the resized macro to the previous position and

confirm with the left mouse button. Now your schematic should look like

that shown in figure 4.22.

As described above the conditional sum adder simultaneously generates the; 12.3.4

sum and sum plus one for the upper and lower halfs of the operands. We

now have positioned the macro CSA[n/2] for the upper half of the operands.

A second instance of this macro will be needed for the lower half. We could

create this instance by following the above steps (selecting a parameter-

ized macro, placing and resizing it). But the editor offers a much simplier

way to perform this operation. Push the entry Copy from the -Cells-

submenu. This enables the cell selection mode where you can select an

instance to be doubled. Press the left mouse button and you will get a

second macro labelled CSA[n/2] which has the same size as our first macro.

Section 4.8 Design of an n Bit Conditional Sum Adder 65

Figure 4.23: Creating a copy of an exisiting macro cell

Place it within the workarea in order to have the schematic look like that

in figure 4.23. During the placement operation you can watch the macro

changing its colour, if it is placed on the first CSA[n/2] or on the border.

In this case you cannot drop it, i.e. pressing the left mouse button has no

effect. You can cancel the operation by pressing the right mouse button.

The copy will disappear and you will return to cell selection mode. Pressing

the right mouse button again will terminate the whole copy operation.

In the next step we create an instance for the subcircuit which selects the; 12.3.1

sum or the sum plus one from the conditional sum adder for the upper halfs.

This selection depends on the carry values of the addition of the lower halfs

of the operands. This subcircuit will be represented by a new parameterized

macro labelled SEL[n/2+1]. Create it in the same way as you have created

the first CSA[n/2] macro and place it below the left n
2

bit conditional sum

adder as it is shown in figure 4.24 (in this figure the macro is also resized

as it will be described in the next paragraph).

66 Chapter 4. The Graphical Editor

The width of this macro should be the same as that of CSA[n/2] which; 12.3.3

we achieve by an appropriate resize operation. The height of this macro

should be smaller than the height of CSA[n/2] because it only will contain

a line of multiplexers (the selection subcircuit must have constant depth as

mentioned above). Now we have selected, resized and positioned the macros

needed for the general recursive equation of the conditional sum adder. It

is a recursive description because we need two instances of a macro which

has the same name as the whole schematic (CSA[n] uses CSA[n/2]). Before

we start to draw the wires between the macros, the schematic should look

like that in figure 4.24.

Figure 4.24: Parameterized macro cells for the n bit conditional sum adder

Entering Wires

In this section we show how to connect the modules with wires. The main; 12.4.1

point you will observe during this procedure is that because of the parame-

terized description the lines drawn will have variable widths. The width of

a line specifies the number of parallel wires contained in this bundle. We

Section 4.8 Design of an n Bit Conditional Sum Adder 67

start with the left CSA[n/2] which computes the sum and sum plus one

of the upper half of the operands. First select the point Enter from the

-Wires- submenu and move the pointer into the workarea. The cursor has

changed to a crosshair and you can select the start point for a new wire.

Move the pointer to the northern side of the left CSA[n/2] macro and po-

sition it to the middle of this side. If you move the pointer slowly toward

the border of the macro you can observe that it snaps onto the border, if

the distance becomes less than a certain tolerance value. This indicates

that you have selected a special position within the schematic. The same

behaviour can be noticed if you reach the frame, a pin of a cell or another

wire. If the pointer has snapped to the border of the macro press the left

mouse button to fix the start point of the new wire. Now move the pointer

vertically towards the northern border of the schematic. You will see that

it is followed by a grey rubberband line which indicates the position of the

new wire. The cursor snaps to the border if the distance is small enough

(your screen should look like that shown in figure 4.25).

Now you can fix the end point of the wire by pressing the left mouse button

again. The grey rubberband line will disappear and you will be prompted

to enter the width of this wire. As mentioned above the width of a wire

represents the number of parallel lines within this bundle. In our case this

wire describes the input line to the first conditional sum adder for the upper

half of the operands. The width of a single operand is given by the parameter

n. The left CSA[n] gets two operands of length n
2
, i.e. the number of single

wires is n. We describe this wire by a variable @high[n] which implicitly

represents the two upper halfs of the operands on each stage of the recursion.

Please enter Wire Width: <@high[n] >

Type in @high[n] and confirm with the return key. You will see the new

wire as a yellow line from the border of the CSA[n] to the border of the

schematic. In the middle of the wire you can notice the description of its

width annotated by a small diagonal line with the appropriate expression

(c.f. figure 4.26).

Note that you can only use the parameters of the schematic to build arith-

68 Chapter 4. The Graphical Editor

Figure 4.25: Connecting a module with the northern border of the schematic

metic expressions or wire variables. The exact syntax for these expressions

is given by the diagrams in appendix.

We proceed with the other modules. The right instance of CSA[n/2] will

also be connected with the northern border of the schematic. You can draw

this wire in the same way as you did for the left CSA[n/2]. Type @low[n]

for its width in order to denote that it describes the wires for the lower

parts of the operands. Now we turn to the southern borders of the two

CSA[n/2]. The left one must be connected with the northern border of

the SEL[n/2+1]. Its width should describe the sum and sum plus one of

the upper parts of the operands. Therefore we call it @highsum[n]. In

this name we also have encoded the two carry bits for the higher part. A

second wire with the width @highsum[n] has to be drawn from the southern

border of SEL[n/2+1] to the southern border of the schematic. In the lower

part we split the carry wires from the rest of the sums because we need

the carries to control the selection subcircuit. First you draw a line from

Section 4.8 Design of an n Bit Conditional Sum Adder 69

the southern border of the right CSA[n/2] to the southern border of the

schematic and call it @lowsum[n]. Next you draw a line which starts at

the southern border of the right CSA[n/2] left of the line @lowsum[n] to

the eastern side of the selection subcircuit SEL[n/2+1]. The width of this

line will be denoted by @carry which describes the carry bits of the sum

and sum plus one for the lower parts of the operands. You can directly

connect the southern and the eastern side of the two macros. Note that the

rubberbanding line will follow the movement of the pointer and there will

be generated a knee when you change the motion direction from south to

west.

Figure 4.26: Final wiring for the conditional sum adder

The last wire we have to draw in this schematic starts at the western border

of the selection subcircuit. It represents the carry lines from the CSA[n/2]

for the lower halfs of the operands which are routed through the selection

subcircuit. Because of the recursive specification of this subcircuit we have

to connect a wire to its western border (c.f. section 4.8.4). This wire must

not be connected to the western border of the schematic because of the

70 Chapter 4. The Graphical Editor

recursive definition of the conditional sum adder. This means that we have

to cut the wire within the schematic. This is done by a so called projection

cell which is a legal operation in the underlying calculus (c.f. section 4.2).

The graphical notation for a projection cell is very simple. Just place the

endpoint of the wire anywhere within the schematic and press the left mouse

button. In our case we draw a small horizontal line towards the western

border of the schematic as you can see it in figure 4.26.

To leave the enter wire mode press the right mouse button twice. The first

button press will deactivate the selection of a wire end point and return to

the selection of new start point. The second button press will abort the

enter wire mode and return to the menu selection mode.

Entering Comments

In order to document the schematic and especially the signals of the wiring; 12.5.1

you can place remarks at any position within the drawing. To do this select

the entry Enter from the -Comments- submenu. Then you are prompted to

enter some comment text. First we label the input wires of the schematic.

For the left wire type in a(n-1)b(n-1)...a(n/2)b(n/2) and confirm this

by pressing the return key. The comment text is now visible within the

workarea and it follows the movement of the pointer. Move it near to

the left input wire and fix its position by pressing the left mouse but-

ton. This causes the input window to popup again in order to enter an-

other comment text. For the right input wire of the schematic type in

a(n/2-1)b(n/2-1)...a(0)b(0) and place it at the appropriate position

(c.f. figure 4.27).

Now we turn to the output signals of the schematic. The left wire, con-

nected with the southern border of the schematic, will be labelled with the

comment c1Hc0Hs1(n-1)s0(n-1)...s1(n/2)s0(n/2). The right wire at

the southern border is labelled with s1(n-1)s0(n-1)...s1(0)s0(0). Fi-

nally the carry wire is marked with the comment text c1Lc0L. To terminate

the enter comment mode simply press the return key within an empty input

window. Your schematic should now look like that in figure 4.27.

Section 4.8 Design of an n Bit Conditional Sum Adder 71

Figure 4.27: Comments placed at the input and output wires of CSA[n]

Note that the comment text are used to document the schematics. If you use

the parameters of the schematic, the comment text will not be evaluated,

if you fix the parameter values as it is shown in section 5.

Saving a Schematic

Now that we have drawn all elements of the general recursive equation for; 12.2.2

the n bit conditional sum adder we must save the schematic. This is simply

done by selecting the entry Save from the -Schematics- submenu. The

schematic will be saved to the file CSA[n].dag in the directory given by the

environment variable DAGDIR.

4.8.3 Basic Equation for a 1 Bit Conditional Sum Adder

Opening a New Schematic

After the specification of the general recursive equation for the conditional; 12.2.1

72 Chapter 4. The Graphical Editor

sum adder we will now draw the schematic for the basic equation. This will

be an adder for 1 bit operands. Therefore we call this schematic CSA[1]

which will be opened following the steps from above. Note that the list of

schematics now contains the entry CSA[n] beside the position of **** New

****. After selecting a new schematic you should type in the name CSA[1]

and press return. Now we have created an empty frame for entering the 1

bit conditional sum adder.

Entering Basic Cells

The task of this adder is to compute the sum and the sum plus one of two

single bits a0 and b0. The following table shows the values of this function:

a0 b0 sH
1 sL

1 sH
0 sL

0

0 0 0 1 0 0

0 1 1 0 0 1

1 0 1 0 0 1

1 1 1 1 1 0

With s1 = (sH
1 , sL

1) = a0 + b0 + 1 and s0 = (sH
0 , sL

0) = a0 + b0 we can derive

following boolean functions from this table

sH
0 = a0 ∧ b0, s

L
0 = a0 ⊕ b0, s

H
1 = a0 ∨ b0, s

L
1 = sL

0 .

We have to draw a schematic with two input signals (a0, b0) and four ouput

signals (sH
1 , sH

0 , sL
1 , sL

0). The sequence of the output signals must have the

given form because of the specification of the general equation for the con-

ditional sum adder.

First we select and place the needed basic cells. To do this select the entry; 12.3.1

Enter from the submenu -Cells-. This will open the three cell list windows

(c.f. figure 4.7). Now we have to select the cells from the upmost window

which contains the names of the available basic cells. These cells are located

in the directory given by the environment variable CELLDIR.

The first cell we need is an OR gate with two inputs. Move the pointer to

the name OR2 and press the left mouse button if the name is highlighted.

Section 4.8 Design of an n Bit Conditional Sum Adder 73

The cell list windows will be closed and you see the shape of an OR gate in

the workarea. The gate will follow the pointer motion within the workarea

and you can pick the right position to place it. As shown above we need

four gates to compute the output values of CSA[1]. The OR gate will be

the leftmost (c.f. figure 4.28).

If you drop the gate by pressing the left mouse button, it is redrawn with

two input pins at its northern border and an output pin at its southern

border. The pins are labelled with the names I1, I2 and O1. Small arrows

indicate the directions of the pins.

Figure 4.28: Placement of the basic cells for the 1 bit conditional sum adder

After the placement the cell list windows are popped up again in order to

select another gate. Move the pointer to the entry AND2 to get an AND

gate with two inputs. We need this gate to compute the second value sH
0 ,

so place it right beside the OR gate. In the same way you should select

an Inverter (INV) and an EXOR gate for two inputs (XOR2) and place them

according to figure 4.28). After the placement of the last gate you can abort

74 Chapter 4. The Graphical Editor

the cell selection mode by pressing the right mouse button.

Entering Wires

To draw the wiring of CSA[1] select the entry Enter from the -Wires-; 12.4.1

submenu. First we connect the output pins of the gates directly with the

southern border of the schematic. Move the pointer near to the output pin

of the OR2 gate. If the distance to the pin is less than a certain tolerance

value the crosshair will snap to the pin and you can fix the start point of

the wire by pressing the left mouse button. Move vertically to the southern

border of the schematic and fix the end point in the same way.

When you drew the wires in the general equation CSA[n] you have been

prompted to enter the width of the wire (e.g. @carry). In the case of con-

necting a pin of a basic cell this is not necessary because the wire represents

a single binary value. The width is automatically set to 1.

Figure 4.29: Wiring for the 1 bit conditional sum adder

After connecting the last three output pins of the gates with the southern

Section 4.8 Design of an n Bit Conditional Sum Adder 75

border of the schematic we turn to the input pins. Connect the left input

(I1) of the OR2 gate as well as the right input (I2) of the XOR2 gate directly

with the northern border of the schematic. These two wires represent the

inputs a0 and b0 of the 1 bit adder. As shown above we have to feed these

values into the OR2, AND2 and XOR2 gate. To do this we branch the wires and

connect them with the appropriate input pins. To do this move the pointer

onto the left wire. You can notice that it snaps to the wire if the distance

is less than a certain tolerance value. Press the left mouse button to fix

the start point and move the pointer to the left input pin of the XOR2 gate.

The connection is indicated by a rubberbanding line between the start point

and the current position of the pointer. If you select an illegal position the

rubberbanding line will disappear. This is the case if the chosen connection

intersects a cell or moves along an already existing wire or the border of

the schematic (try this by moving the pointer into the AND2 gate). If you

have setup the right connection to the left input of the XOR2 gate press the

left mouse button to fix the end point of the wire. The yellow dot at the

start point of the new wire indicates a branching of the previous vertical

wire. Implicitly the branch node is considered to be a basic operation in the

underlying calculus just as the projection node mentioned above. In this

special case we have entered an east–branch.

In the same way you can connect the right vertical wire with the right

input pin of the OR2 gate. Both new wires still have to be connected with

the input pins of the AND2 gate. This can be done by two simple vertical

wires. Here it is important that you select the input pin of the AND2 gate

as the start point and move the pointer vertically toward the appropriate

wire creating a new branch (south–branch). If you fix the start point on the

horizontal wire you might miss the right position for a vertical connection.

The position of the pin implies the position of the wire, so selecting it first

is often very helpful. Now complete the wiring of CSA[1] by connecting the

wire from the output of the XOR2 gate with the input pin of the Inverter.

As shown above the XOR2 gate computes the value sL
0 and the value sL

1 = sL
0

is just the inverted signal. This connection has to be entered in two steps.

First fix the start point of the wire at the output wire of the XOR2 gate and

76 Chapter 4. The Graphical Editor

move the pointer upwards between the INV and the XOR2 as it is indicated

in figure 4.29. At this position fix the end point of this wire segment. From

this end point move the pointer to the pin connector of the input of INV.

The previous end point serves as the start point for the next wire segment

which you can fix now by pressing the left mouse button. You should have

entered a schematic similar to that shown in figure 4.30. Terminate the

enter wire mode by pressing the right mouse button two times.

Entering Comments

Before we save the schematic we want to document it by some comments; 12.5.1

in order to later remember the meaning of the different signals. For this

purpose select the entry Enter from the -Comments- submenu. Now you

are prompted to enter the comment text. First we will describe the input

signals of the schematic. The left one represents the value a0, so type in

a0 and press the return key. You will see the comment text in the upper

left corner of the workarea. The text is connected to the pointer and will

follow its movement within the workarea. Move it near to the connection

of the left input signal with the northern border of the schematic and place

it on the right side of the wire by pressing the left mouse button. After the

placement of the comment the text field window is popped up again and

you can enter the next comment text. For the second input wire type in b0

and move it to the analogous position.

Now we turn to the output signals of CSA[1]. The sequence from left to right

is (sH
1 , sH

0 , sL
1 , sL

0). That is why we place the remaining four comments s1H,

s0H, s1L and s0L near to the points where the wires are connected to the

southern border of the schematic. After the placement of the last comment

you can abort the loop of entering a comment text by simply pressing the

return key to an empty input window. The schematic CSA[1] should now

look like that shown in figure 4.30.

Saving the Schematic

Save the schematic by selecting the entry Save from the -Schematics-; 12.2.2

Section 4.8 Design of an n Bit Conditional Sum Adder 77

Figure 4.30: Remarks for the input and output signals of CSA[1]

submenu. The graphical input is then written to the file CSA[1].dag in the

directory given by the environment variable DAGDIR.

4.8.4 General Equation for the Selection Subcircuit

At this point of the session we have entered the general and the basic equa-

tion for the recursive description of an n bit conditional sum adder. In the

general equation CSA[n] we used a parameterized subcircuit SEL[n/2+1]

for the selection of either the sum or the sum plus one of the upper halfs

of the operands. This selection circuit is controlled by the values of the

carry bits of the sum of the lower half. In order to generate an adder with

logarithmic depth the selection circuit must have constant depth. In the

general equation of the conditional sum adder we used an instance of the

selection subcircuit in advance, i.e. before we have defined this circuit.

We will construct this subcircuit by a row of multiplexers. The generation

of a row of k elements is a basic recursive technique which is used in a

78 Chapter 4. The Graphical Editor

lot of parameterized designs. If the number of elements to be generated is

a power of two the recursion is even more simple than in our case where

we generate an arbitrary number k (k > 0) of elements. We need two

schematic inputs for the specification, one for a general and one for a basic

equation. The principle is a simple divide and conquer technique, i.e. a

row of k elements consists of a row of dk
2
e elements followed by a row of

bk
2
c elements. Here we use the reduction k −→ dk

2
e + bk

2
c which leads to a

structure of logarithmic size as we will show it in chapter 5. You could also

choose the form k −→ (k−1)+1 which would result in a structure of linear

size.

Opening a New Schematic

An important feature of the graphical editor of the CADIC system is that; 12.2.1

such theoretical considerations can directly be used to set up an appropriate

schematic. The general equation for the row of k multiplexers is called

SEL[k]. You should open a new schematic now (select the entry Load from

the -Schematics- submenu and **** New **** in the schematic list, then

type in the appropriate name).

Entering and Manipulating Parameterized Macros

In the empty frame we first place a new parameterized macro cell. Select; 12.3.1

the entry Enter from the -Cells- submenu to popup the cell selection

windows. In the third window which contains the names of parameterized

macro cells, move the pointer onto the --- New Cell --- entry and press

the left mouse button if it is highlighted. In the following input line type

SEL[upper(k/2)] for the name of the new macro cell. The function call

upper(k/2) computes the value dk
2
e (for more information about standard

function calls see section 12.1). You get a new parameterized macro with; 12.1

the default size. This macro can be moved around within the workarea.

Place it near to the western border of the schematic and press the left

mouse button. After that the cell selection windows are popped up again.

We will generate the second instance from this first one, so you can abort

Section 4.8 Design of an n Bit Conditional Sum Adder 79

the cell selection mode by pressing the right mouse button within one of the

three list windows.

Before we create a copy of this instance we resize it to a convenient size. Se-; 12.3.3

lect the entry Resize from the -Cells- submenu. You are in cell selection

mode when you move the pointer into the workarea. Notice that the only in-

stance SEL[upper(k/2)] is highlighted in blue. Select it by pressing the left

mouse button. After that you can resize it in the same way as we did during

the specification of CSA[n] for the first instance CSA[n/2] (c.f. page 62).

The pointer motion is coupled with the drawing of a rubberbanding rectan-

gle which indicates the new size of the macro cell. After confirming the new

size with the left mouse button you are in the cell placement mode. Move

the macro to its previous position and press the left mouse button again.

You are returned to the cell selection mode for further resize operations.

Abort this mode by pressing the right mouse button within the workarea.

Now we create a copy of this instance for the second part which contains; 12.3.4

the last bk
2
c elements. If you wonder why we take an instance with the same

name, you will later see that its label can be changed to the correct value.

Select the entry Copy from the -Cells- submenu and move the pointer into

the workarea to choose the instance SEL[upper(k/2)]. If you press the left

mouse button you get a second instance of this name with the same size

like the first one. Now the cell placement mode is active and you can move

the new instance right beside the first SEL[upper(k/2)]. Fix its position

by pressing the left mouse button, then abort the cell selection mode by

clicking with the right mouse button.

As shown above we will recursively construct a row of k elements by the; 12.3.5

sequence of dk
2
e and bk

2
c elements. For the second instance we have to

change its parameter from upper(k/2) to lower(k/2) (the function call

lower(x) computes the value bxc, c.f. section 12.1). Now we change the

; 12.1 name of the instance in this way. For this purpose select the entry Rename

from the -Cells- submenu. Select the right SEL[upper(k/2)] by moving

the pointer near to it and press the left mouse button when the instance

is highlighted. The text input window will popup on the screen and you

80 Chapter 4. The Graphical Editor

can type in SEL[lower(k/2)] as its new name. Note that you have to type

in the complete name, it is not possible to exchange only the expressions

for the parameters. If the typed name is correct press the return key and

now the selected instance has got the new name. The system returns to the

cell selection mode in order to let you change the label of another macro.

This mode can be aborted by pressing the right mouse button within the

workarea.

Entering Wires

Now we turn to the wiring of SEL[k] which is very simple. As you can see in; 12.4.1

the schematic for CSA[n] (c.f. figure 4.26) the macro SEL[n/2+1] receives

at its eastern border the wires representing the carry bits of the sum and

the sum plus one of the lower halfs of the operands. This wire has to be

connected to all the multiplexers in the row. Therefore we first connect

the eastern border of the right instance SEL[lower(k/2)] with the eastern

border of the schematic. Then we connect the eastern border of the left

instance SEL[upper(k/2)] with the western border of the right instance.

Finally the western border of the left instance is connected with the western

border of the schematic. To enter these wires select the entry Enter from

the -Wires- submenu and move the pointer into the workarea. Fix the start

point in the middle of the eastern border of the SEL[lower(k/2)] with the

left mouse button and move the pointer horizontally onto the eastern border

of the schematic. If you fix the end point of the wire the input window pops

up on the screen. Type in @carry to denote that this wire represents the

carry values. Now select a new start point for the next wire on the eastern

border of the left instance and connect it with the western border of the

right instance. At the text input window type in @carry to express that this

wire represents the continuation of the carry wires which are fed through

the SEL[lower(k/2)]. In the same way this wire is routed through the

left instance, i.e. connect the western border of SEL[upper(k/2)] with

the western border of the schematic and call it @carry as well. Now your

schematic should look similar to the one shown in figure 4.31.

Section 4.8 Design of an n Bit Conditional Sum Adder 81

Figure 4.31: Feed through for the carry wires

Now we have drawn the carry wires which control the outputs of the mul-

tiplexers. To complete the wiring of SEL[k] we draw the data input and

output wires. As you can see in the schematic for CSA[n] (c.f. figure 4.26)

the inputs (outputs) of the selection subcircuit SEL[n/2+1] are connected

to its northern (southern) border. These wires represent the sum and the

sum plus one of the upper half of the operands in alternating sequence. First

we draw a wire from the middle of the northern border of the left instance

to the northern border of the schematic. Type in @selinL[k] for the name

of this wire. We choose this name to denote that it represents the left (L)

part of the input wires (in) to the selection subcircuit (sel). The number

of single binary values represented by this wire depends on the value of the

parameter k. This is the reason why we also use this parameter in the name

of the wire variable.

Next we connect the southern border of SEL[upper(k/2)] with the southern

border of the schematic by a wire named @seloutL[k]. In the same way

82 Chapter 4. The Graphical Editor

Figure 4.32: Final wiring for the selection subcircuit

we connect the right instance SEL[lower(k/2)] with the northern and the

southern border of the schematic. These two wires are denoted by the

names @selinR[k] (northern border) and @seloutR[k] (southern border)

to indicate that they represent the inputs and outputs of the right part of

the selection subcircuit. After you have drawn the last wire you can abort

the enter wire mode by pressing the right mouse button twice within the

workarea.

Entering Comments

Now we will place comments to the input and output signals of SEL[k].; 12.5.1

To do this select the entry Enter from the -Comments- submenu. Our first

comment concerns the input wires at the northern border of the schematic.

At the following popup input window type the text

sum and sum+1 in alternating order

Section 4.8 Design of an n Bit Conditional Sum Adder 83

and press the return key. After that you can move the comment text within

the workarea. Place it between the two input wires near to the northern

border of the schematic and confirm the position with the left mouse button.

Next we place a comment at the output wires at the southern border of the

schematic. The popup window appears automatically after you placed the

first comment. At its prompt type in

selected sum or sum+1

and press the return key. The text is now movable inside the workarea.

Place it between the two output wires by pressing the left mouse button.

Figure 4.33: Comments for the input and output signals of SEL[k]

We will place a last comment at the inputs at the eastern border of the

schematic. These control signals represent the carry values of the sum plus

one and the sum of the addition of the lower operand parts. That is why

we enter the comment c1Lc0L for this wire. c1(0)L stands for carry (c) of

the sum plus one (sum) (1 (0)) of the addition of the lower (L) parts of

84 Chapter 4. The Graphical Editor

the operands. After pressing the return key move this comment near to the

corresponding wire at the eastern border of the schematic where you can

place it with the left mouse button.

Finally you can abort the enter comment mode by simply pressing the return

key in the empty input window. You return to the menu selection mode.

Saving the Schematic

If you have drawn a schematic similar to that in figure 4.33 you can save it; 12.2.2

by selecting the entry Save from the -Schematics- submenu. CADIC will

put the file SEL[k].dag into DAGDIR.

4.8.5 Basic Equation for the Selection Subcircuit

Opening a New Schematic

To complete the specification of the n bit conditional sum adder we have; 12.2.1

to draw a schematic for the basic equation of the selection subcircuit.

Open a new schematic SEL[1] by choosing the **** New **** entry in

the schematic list which will be displayed if you select the entry Load from

the -Schematics- submenu.

Entering and Manipulating Basic Cells

The basic element of the selection subcircuit has two input bits s1, s0 from

the sum plus one and from the sum of the corresponding part of the

operands. Between these two bits a selection has to be made according

to the values of the carry bits c1 and c0. Both carries come from the sums

of the lower part of the operands. c1 is the carry of the sum plus one, c0 is

the carry of the sum. The selected values are the outputs a1 and a0 of the

elementary selection macro. It holds:

a1 ← (c1 ∧ s1) ∨ (c1 ∧ s0), a0 ← (c0 ∧ s1) ∨ (c0 ∧ s0).

To perform this operations we need two multiplexers from the basic cell

library. For this purpose select the entry Enter from the -Cells- submenu

Section 4.8 Design of an n Bit Conditional Sum Adder 85

. Move the pointer to the entry MUX within the basic cell window (upmost); 12.3.1

and press the left mouse button when the name is highlighted. Place the cell

in the left half of the schematic as shown in figure 4.34. A second multiplexer

can directly be selected from the popped up cell selection windows and can

be moved to the right half of the schematic. After placing it abort the

cell selection by pressing the right mouse button within one of the cell list

windows.

The multiplexer has three input pins I1, I2 and I3 at its northern border

and one output pin O1 at its southern border. I3 is the selection input with

the following functionality:

O1←−
 I1 if I3 = 0

I2 if I3 = 1

Before we draw the wiring of SEL[1] we change the orientation of the left

multiplexer in order to minimize the number of wire crossings. Another

reason for this action is to demonstrate how you can change the orientation

of an instance. Select the entry Move from the -Cells- submenu . Although; 12.3.2

this entry is called Move it contains the movement and rotating and flipping

of instances. Move the pointer near to the left multiplexer and press the

left mouse button when it is highlighted. After that you are in the cell

placement mode, i.e. you can select a new position for the cell. But at

the same time you can change its orientation by pressing the middle mouse

button several time. Each time you press it the instance changes to one of

eight possible orientations. The current orientation is indicated by a suffix

to the cellname. The cell is in normal orientation if there is no suffix to its

name. Pressing the middle mouse button for the first time the cell is turned

clockwise by 90 degree, indicated by the suffix (90->).

86 Chapter 4. The Graphical Editor

button presses suffix meaning

0 normal orientation

1 (90->) turned clockwise 90o

2 (180) turned 180o

3 (<-90) turned counterclockwise 90o

4 (^\v) flipped at the horizontal axis

5 (<-90^\v)
turned counterclockwise 90o, then

flipped at the horizontal axis

6 (<\>) flipped at the vertical axis

7 (<-90<\>)
turned counterclockwise 90o, then

flipped at the vertical axis

8 ≡ 0 normal orientation

In our case we want to flip the multiplexer at its vertical axis in order to

invert the sequence of its input pins. According to the tabular given above

you get this orientation by pressing the middle mouse button six times.

During this operation you are in the cell placement mode and the instance

will follow any movement of the pointer within the workarea. If you have

chosen the correct orientation you can move the instance to its previous

position and place it by pressing the left mouse button. If you made a

mistake in the selection of the orientation you can abort the operation by

pressing the right mouse button. Then the cell is returned to its original

position and orientation and you will be in cell selection mode again to

restart with the operation.

After placing the instance you are in the cell selection mode again in order to

change the orientation of another cell. You can abort this mode by pressing

the right mouse button within the workarea.

Entering Wires

Now we begin with the wiring of SEL[1]. Select the entry Enter from the; 12.4.1

-Wires- submenu. First we connect the output pins of the multiplexers

with the southern border of the schematic. Move the pointer near to the

pin at the southern border of the left multiplexer and press the left mouse

Section 4.8 Design of an n Bit Conditional Sum Adder 87

button when the crosshair cursor snaps to the pin. Now move vertically

down towards the schematic border drawing the rubberbanding line and fix

the end point of the wire. Note that you do not have to enter the width of the

wire. Every wire which is connected to a pin of a basic cell is automatically

given the width 1. In the same way we connect the output pin of the right

multiplexer with the southern border of the schematic.

It has been shown above that the value s1 has to be assigned to the outputs

if c1 or c0 have the value 1. Respectively the value s0 is the output if c1 or

c0 are 0. From the description of the multiplexer it follows that we have to

connect both inputs I1 with the schematic input s1 and both inputs I2 with

s0. The selection input I3 of the left multiplexer has to be connected with

c1 and the selection input of the right multiplexer with c0. Fix the start

point of the next wire at the input pin I1 of the left multiplexer. Move

vertically to the northern border of the schematic and fix the end point of

this wire. Now select the input pin I1 of the right multiplexer move a little

bit upwards and then horizontally to the just drawn wire and fix the end

point on it, creating an east–branch. To draw the next wire you first have to

press the right mouse button once, because we do not want to use the end

point of this wire as the new start point. After that we select the input pin

I2 of the right multiplexer and draw a vertical connection with the northern

schematic border. From the input pin I2 of the left multiplexer we draw a

connection to the wire starting at the input pin I2 of the right multiplexer

and create a west–branch on this wire. After fixing the end point you must

press the right mouse button once in order to return to the selection of a

new start point.

Finally we have to enter the wires for the control signals which have to be

connected with the I3 input pins of the multiplexers. It has been shown

above that these wires have to be fed through the whole selection subcircuit

because they are used to control all the multiplexers in the row. For this

purpose we first draw the wires from the eastern to the western border

of the schematic. Fix the start point of the first wire (c1) on the eastern

border. Leave enough space to enter the second wire between this one and

88 Chapter 4. The Graphical Editor

Figure 4.34: Final wiring of SEL[1]

the horizontal parts of the two input signals. Move the pointer horizontally

to the western border and fix the end point. At the following input window

type in 1 as the width of this new wire.

Now you draw a second connection from the eastern to the western border

for the carry signal c0 below the first one (type in 1 to the input window as

the width of this wire).

The connection to the inputs I3 of the multiplexers is done by first selecting

the pin and then moving vertically to the appropriate wire (the left (right)

multiplexer has to be connected with the upper (lower) wire) creating a

south–branch. Compare your schematic with that shown in figure 4.34.

Entering Comments

Now we place comments at the input and output signals of SEL[1] according; 12.5.1

to the equations shown above. First we label the left input wire at the

northern border of the schematic. To do this select the entry Enter from

Section 4.8 Design of an n Bit Conditional Sum Adder 89

the -Comments- submenu and type s1 at the following input window. After

you have hit the return key, you can move the comment text within the

workarea. Place it near to the connection of the left input wire with the

northern border of the schematic. The text s1 denotes that this signal

represents a single bit of the sum plus one. In the same way the right input

wire at the northern border is labelled s0 to show that it is a single bit of

the sum.

The schematic SEL[1] has two more input wires which represent the in-

coming carry values. These carries are input from the eastern border and

are routed through SEL[1] to its western border in order to be available in

the selection subcircuit on the left side of the current. The upper one of

the two carry wires represents the value of the carry of the sum plus one.

Therefore we place a comment c1L near to the connection of this wire with

the eastern border of the schematic. This comment marks this wire as being

the carry (c) of the sum plus one (1) of the lower part (L) of the operands.

For analog reasons the lower carry wire is labelled with c0L.

Finally we mark the output wires of SEL[1]. According to our equation

from above we place the comment text a1 near to the connection of the left

output wire with the southern border of the schematic. The right output

wire gets the comment a0. Before we save the schematic you should compare

your input with that shown in figure 4.35.

Saving the Schematic

To complete the specification of the n bit conditional sum adder we save the

last schematic to the file SEL[1].dag in DAGDIR now. Do this by selecting

the entry Save from the -Schematics- submenu.

Now we have drawn the four schematics needed to describe an arbitrary

conditional sum adder for operands of length n = 2k where k ≥ 0. Note

that you do not have to change any of the inputs to extract e.g. a 32

bit adder instead of a 16 bit adder. This is true if we only consider the

functional behaviour of the circuit. In reality the change of the bitlength

of the operands influences the timing behaviour of the signals because of

90 Chapter 4. The Graphical Editor

Figure 4.35: Remarks for the input and output signals of SEL[1]

increasing fanout for example. We will consider such problems when we

describe the integrated tools.

Another problem is the succession of the input and output signals of our

design of the conditional sum adder. As shown above the inputs are given in

the sequence an−1,bn−1,. . ., ai,bi,. . .,a0,b0 because of the recursive splitting

of the operands. This is a restriction if we want to visualize simulation

results in order to check the correctness of our design. We will demonstrate

those simulations in chapter 6. A more natural sequence for the inputs of

the adder would be an−1,. . .,a0 followed by bn−1, . . .,b0. In the same way the

sequence of the output signals c1,c0,s1,n−1,s0,n−1, . . .,s1,0,s0,0 which contains

the bits of the sum plus one and the sum in alternating order should be

changed to the bits of the sum only preceeded by the corresponding carry

bit.

We can achieve these signal sequences for the inputs and outputs of the

conditional sum adder by two simple subcircuits which only contain wiring

Section 4.8 Design of an n Bit Conditional Sum Adder 91

elements. These subcircuits which are also parameterized by the length n

of the operands can be described by very simple recursive equations as we

will show in the following paragraphs.

4.8.6 General Equation for Shuffle Subcircuit

We want to specify a circuit with the following functionality: given the

input sequence an−1,. . .,a0,bn−1,. . .,b0 it should produce the output sequence

an−1,bn−1,. . .,a0,b0. This permutation operation is used very often and is

called shuffling of the input wires.

A recursive specification can be derived by the following considerations. To

shuffle two sequences a and b of n bits we take the first half of a and the

first half of b and shuffle them in an appropriate shuffle subcircuit. In the

same way we take the second half of a and the second half of b and shuffle

them together.

Opening a New Schematic

Open a new schematic for the general recursive equation of the shuffling; 12.2.1

subcircuit. We call this schematic SHUFFLE[n] to show that it can be used

to shuffle two input sequences of length n.

Entering and Manipulating Parameterized Macros

We obtain a simple recursion, because the length of the input sequences of

the shuffling subcircuit have the same size as the length of the operands of

the conditional sum adder (n = 2k). As shown above we need two parame-

terized macro cells SHUFFLE[n/2]. We will enter the first one by selecting

the entry Enter from the -Cells- submenu . Move the pointer into the; 12.3.1

window with the parameterized macro names (third cell selection window)

and select the entry --- New Cell --- by pressing the left mouse button

when it is highlighted. In the following input window type in the name

SHUFFLE[n/2] and press the return key. Now you can move the graphical

representation of the new parameterized macro cell within the workarea.

Place it near to the western border of the schematic. We will create the

92 Chapter 4. The Graphical Editor

second instance of SHUFFLE[n/2] with the help of the copy operation and

you can abort the cell selection mode by pressing the right mouse button

within one of the three cell selection windows.

Before we create a copy we will change the default size of the macro. Select; 12.3.3

the entry Resize from the -Cells- submenu. If you move the pointer into

the workarea you are in cell selection mode and the only instance within the

schematic is highlighted in blue. Select it for the resize operation by pressing

the left mouse button. After the selection you can draw a rubberbanding

frame which indicates the new size of the macro. Choose an appropriate

size and confirm it with the left mouse button. After that you return to cell

selection mode which can be aborted by pressing the right mouse button

within the workarea.

The second instance is now created by copying the first one. To do this; 12.3.4

select the entry Copy from the -Cells- submenu. Move the pointer into

the workarea to select the first SHUFFLE[n/2] with the left mouse button.

Now you get a second macro with the same size and name as the first

one. You are in the cell placement mode, so you can choose an appropriate

position for the new instance (c.f. figure 4.36) and confirm this with the left

mouse button. The following cell selection mode can be aborted by pressing

the right mouse button within the workarea.

Entering Wires

We start entering the wiring for SHUFFLE[n] at the southern borders of; 12.4.1

the two instances. These are the output wires of the shuffling subcircuit.

To activate enter wire mode select the entry Enter from the -Wires- sub-

menu. First we select the start point on the southern border of the left

SHUFFLE[n/2]. Fix it with the left mouse button and move the pointer

vertically downwards until it snaps to the southern border of the schematic.

After fixing the end point the input window will popup in order to specify

the width of this wire. Type in @abH[n] to denote that this wire repre-

sents the higher part of the shuffled sequence of two input sequences a and

b. In the same way you should connect the southern border of the right

Section 4.8 Design of an n Bit Conditional Sum Adder 93

SHUFFLE[n/2] with the southern border of the schematic. The width of

this wire is described by @abL[n].

Figure 4.36: Schematic for the general equation SHUFFLE[n] of the shuffling

subcircuit

Now we turn to the input wires of the two shuffle instances. As shown above

we have to shuffle the first half of the first input sequence with the first half

of the second input sequence in the left SHUFFLE[n/2]. For these purposes

we connect the northern border of the left instance with the northern border

of the schematic with a wire of width @aH[n] to denote that it represents

the upper (H) half of the input sequence a. In the same way we connect

the northern border of the right instance with the northern border of the

schematic by a wire of width @bL[n] (c.f. figure 4.36). Next we draw a wire

from the right part of the northern border of the left instance near to the

point where the wire @bL[n] is connected to the schematic border. This

can be done by fixing the start point on the border of the left instance and

moving the pointer a short distance upwards and then to the right near to

the wire @bL[n]. Here we fix a wire point by pressing the left mouse button.

94 Chapter 4. The Graphical Editor

Enter @bH[n] as the width of this wiring which represents the upper half of

the input sequence b. From this point we connect the wire to the northern

border of the schematic now. This can easily be done because a fixed end

point serves as start point for the next wire. So we have to click one time

to fix the end point of the previous wire and use this point to continue

drawing. You do not have to type in the width again because it can be

derived from the continued wire. In the same way you should connect the

northern border of the right SHUFFLE[n/2] with a position on the northern

border of the schematic near to the position of the wire @aH[n]. The width

of this wire is denoted by @aL[n]. Abort the enter wire mode by pressing

the right mouse button twice within the workarea.

Saving the Schematic

In this schematic we do not enter comments for the reasons of simplicity.; 12.2.2

Now you can save the general equation for the shuffling subcircuit into

DAGDIR by selecting the entry Save from the -Schematics- submenu.

4.8.7 Basic Equation for Shuffling Subcircuit

The basic equation for the shuffling subcircuit concerns the merging of two

input sequences of length 2. It is obvious that in case of sequences of length 1

we have nothing to do (the input is equal to the output). For two sequences

of length 2 a1,a0 and b1,b0 the output sequence is a1,b1,a0,b0. This can be

achieved by a simple schematic input which only contains wiring elements.

Opening a New Schematic

For the basic equation of the shuffling subcircuit we create a new schematic; 12.2.1

named SHUFFLE[2]. This denotes that it shuffles two input sequences of

length 2 (compare this with the general equation where SHUFFLE[n] shuffles

two sequences of length n). Open the new schematic by selecting **** New

**** from the list of schematic names which will be displayed when you

select the entry Load from the -Schematics- submenu. Type SHUFFLE[2]

as input to the popup window and press the return key.

Section 4.8 Design of an n Bit Conditional Sum Adder 95

Entering Wires

In this schematic we need no macros nor basic cells, so we proceed with; 12.4.1

entering the wiring. As shown above SHUFFLE[2] has four input and four

output signals. The output values are the same as the inputs, but their

order has changed. From the comparison between the order of the inputs

and the outputs we obtain the desired schematic. First we notice that the

first output signal a1 is the same signal as the first input signal. Therefore

we draw a vertical wire from the northern border to the southern border of

the schematic. To do this select the entry Enter from the -Wires- submenu.

Move the pointer onto the northern border of the schematic and fix the start

point near to the western border by pressing the left mouse button. Draw

the rubberbanding line vertically down towards the southern border and fix

its end point in the same way. Because this wire represents one single bit of

the input sequence we type 1 as the input to the window asking the width

of the wire.

For the same reasons we can draw the wire for the last input bit b0 near to

the eastern border straight from the northern to the southern border of the

schematic. The width of this wire also is 1.

As shown above the two bits in the middle of the input sequence a0 and

b1 have to be exchanged. We achieve this by drawing two crossed wires.

Fix the start point for the input a0 at the northern border of the schematic

right beside a1 and move the pointer vertically down a certain distance.

Fix the end point and type in 1 for its width. From this end point we

continue the wire horizontally towards the right wire for b0 and then down

to the southern border of the schematic where it is fixed by pressing the left

mouse button (c.f. figure 4.37). In the same way you should draw the wire

for the third input bit b1 from the northern to the southern border of the

schematic creating a crossing with the previous wire. Now your schematic

should look like that shown in figure 4.37.

Saving the Schematic

In this schematic we do not enter comments for the reasons of simplic-; 12.2.2

96 Chapter 4. The Graphical Editor

ity. Now you should save the basic equation for the shuffling subcircuit to

the file SHUFFLE[2].dag in DAGDIR by selecting the entry Save from the

-Schematics- submenu.

The shuffling subcircuit generates the correct input sequence an−1,bn−1,. . .,a0,b0

for our design of the conditional sum adder. This subcircuit helps us to in-

terprete the simulation results in chapter 6 because we can keep the bits of

the operands a and b together.

For a similar reason we combine the bits of the output values of the condi-

tional sum adder. As shown above the sequence of the output bits is c1,c0,

s1,n−1,s0,n−1,. . .,s1,0,s0,0. The first two bits represent the carries of the sum

plus one and the sum of the addition. The next 2n bits represent the sum

plus one and the sum in alternating order. As result we only want to have

the carry and the bits of the sum c0,s0,n−1,. . .,s0,0 as outputs of our addition

circuit. To perform this task we will now specify a subcircuit which cuts

the not desired wires.

4.8.8 General Equation for the Cutting Subcircuit

Similar to the row of multiplexers from section 4.8.4 this subcircuit can be

recursively specified. The task of the whole circuit is to cut each wire on

an odd position from a sequence w1,w2,w3,. . .,wk in order to generate the

sequence w2,w4,. . .,wk (if k is an even number as in our special case). That

means we have to create a row of k
2

elements where each element cuts the

first wire and feeds through the second.

Opening a Schematic

We use the schematic SEL[k] to create the new equation because the struc-; 12.2.1

ture of the general equation of the cutting subcircuit is very similar to

that of the row of multiplexers. To open it select the entry Load from the

-Schematics- submenu and move the pointer onto the name SEL[k]. Select

it by pressing the left mouse button when it is highlighted.

Section 4.8 Design of an n Bit Conditional Sum Adder 97

Figure 4.37: Schematic for the basic equation SHUFFLE[2]

Saving a Schematic Under a New Name

In the workarea the schematic input of SEL[k] is visible. We want to copy; 12.2.3

this schematic to a new sheet in order to construct the cutting subcircuit.

You can do this by selecting the entry Save As from the -Schematics-

submenu. In the following input window you should type in a new name for

the schematic, here it should be CUT[k]. Note that after you pressed the

return key the name of the loaded schematic still is SEL[k].

Opening a Schematic

In order not to overwrite SEL[k] first we have to load the copy which is; 12.2.1

saved under the name CUT[k]. To do this select the entry Load from the

-Schematics- submenu. In the list window move the pointer onto the name

CUT[k] and press the left mouse button when the name is highlighted. Note

that you will see the same schematic as before but the schematic name in

the upper right corner of the graphical surface has changed to CUT[k] which

98 Chapter 4. The Graphical Editor

is now the schematic under construction.

Deleting Wires

Before we draw all the wires for CUT[k] we have to delete the wires from; 12.4.2

SEL[k]. To do this select the entry Delete from the -Wires- submenu.

If you move the pointer into the workarea you are in the wire selection

mode. The wire nearest to the pointer is highlighted (it changes its colour

from yellow to cyan). By pressing the left mouse button you can delete

the highlighted wire. After the deletion operation a new wire is highlighted

which is the closest wire to the pointer position. Proceed with this operation

until all wires are deleted. After the deletion of the last wire the wire

selection mode is automatically terminated and you return to menu selection

mode. Alternatively the wire deletion mode can be terminated by pressing

the right mouse button within the workarea.

Deleting Comments

Just as the wires we have to delete the two comment texts in the schematic; 12.5.2

before we change the labels of the macros. To do this select the entry Delete

from the -Comments- submenu. If you move the pointer into the workarea

you are in comment selection mode and the comment text nearest to the

pointer is highlighted (its colour changes from white to cyan). By pressing

the left mouse button this text can be erased from the schematic. After

the deletion the next comment text which is nearest to the pointer is high-

lighted. Proceed with this operation until all comments are erased. After

the deletion of the last comment the function is automatically terminated

as well as when you press the right mouse button within the workarea.

Manipulating Parameterized Macros

Next we have to rename the two instances which are still labelled; 12.3.5

SEL[upper(k/2)] and SEL[lower(k/2)]. According to the name CUT of

our schematic we have to change the names of these instances. Select the

entry Rename from the -Cells- submenu. If you move the pointer into

Section 4.8 Design of an n Bit Conditional Sum Adder 99

the workarea you are in cell selection mode where the instance closest to

the pointer position is highlighted in blue. First we select the left instance

and press the left mouse button. In the following input window we type

in CUT[upper(k/2)] as its new name and press the return key to confirm

the input. Now select the right instance in the same way and change its

name to CUT[lower(k/2)]. After that you can abort cell selection mode

by pressing the right mouse button within the workarea.

Figure 4.38: Graphical input for the general equation of the cutting subcir-

cuit CUT[k]

Entering Wires

The wiring of CUT[k] is very simple and only consists of vertical wires; 12.4.1

connecting the two instances with the schematic borders. To draw it select

the entry Enter from the -Wires- submenu. First we connect the northern

border of the left instance with the northern border of the schematic. This

wire represents the input signals to CUT[upper(k/2)], i.e. from this bundle

each wire at an odd position has to be cut. At the prompt for the width of

100 Chapter 4. The Graphical Editor

this bundle type in @uncutL[k] to denote that it represents the left half of

the uncut wires. Now select the start point for the next wire at the southern

border of the left instance and move the pointer vertically down towards the

southern border of the schematic where you fix the end point of this wire.

Type in @cutL[k] as its width in order to show that the output of the left

instance are the cut wires.

In the same way we connect the right instance with the corresponding

schematic borders. These wires have the width @uncutR[k] (@cutR[k])

for the connection between the northern (southern) borders. Your graphi-

cal input should look similar to that shown in figure 4.38. Abort the wire

enter mode by pressing the right mouse button twice within the workarea.

Saving the Schematic

Save the schematic CUT[k] into DAGDIR by selecting the entry Save from; 12.2.2

the -Schematics- submenu.

4.8.9 Basic Equation for the Cutting Subcircuit

The basic element for the cutting subcircuit is very simple. It takes two in-

put signals wi,wi+1 (where i is an odd number) of the whole input sequence,

cuts the first one and feeds through the second wi+1 as its output signal.

Opening a New Schematic

For the basic equation of the cutting subcircuit we now open a new; 12.2.1

schematic CUT[1]. Select the entry Load from the -Schematics- submenu

and move the pointer to the position of **** New **** within the list win-

dow for the schematic names. When it is highlighted press the left mouse

button. At the following input window type CUT[1] as the new name and

press the return key.

Section 4.8 Design of an n Bit Conditional Sum Adder 101

Entering Wires

Because this schematic does not contain macros we proceed with entering; 12.4.1

the wiring just as we did it in the case of SHUFFLE[2]. CUT[1] has two

input signals from which the first one is cut. To draw the needed wires

select the entry Enter from the -Wires- submenu. Move the pointer into

the workarea near onto the middle of the northern border of the schematic

and fix the start point of the first wire with the left mouse button. Move

vertically down until you have reached the middle of the schematic where

we fix the end point of this wire. Now we have drawn a wire which starts

at the northern border of the schematic and ends within the schematic. As

you have already learned during the input of the general equation for the

conditional sum adder CSA[n] the end point of this wire is a legal operation

within the underlying calculus. Cutting a wire to an open end is called a

projection operation. For the width of this wire type in 1 at the following

input window.

The second wire in CUT[k] has to connect the northern and the southern

border of the schematic. Before you can fix the start point of this wire you

have to press the right mouse button. This is necessary to tell the editor

that you want to fix a new start point for the next wire and that you do not

want to continue the just drawn wire (as we did it in the case of the wiring

of SHUFFLE[2]). Note that you have to select a start point of the wire on

the northern border right beside the start point of the previous wire. The

width of this wire is 1 as well. Abort the enter wire mode by pressing the

right mouse button twice within the workarea.

Saving the Schematic

If you have drawn a schematic similar to that shown in figure 4.39 you can; 12.2.2

save it into DAGDIR by selecting the entry Save from the -Schematics-

submenu.

102 Chapter 4. The Graphical Editor

Figure 4.39: Projection of a single wire in the basic equation of the cutting

subcircuit CUT[1]

4.8.10 Equation for the complete n bit adder

In this section we will combine the main part of the conditional sum

adder, i.e. the circuit CSA[n] for n bit operands with the two wiring

subcircuits SHUFFLE[n] and CUT[k] to obtain an addition circuit with

the following functionality. It receives two binary vectors a = an−1 . . . a0

and b = bn−1 . . . b0 as inputs and generates an output vector of the form

s = csn−1 . . . s0 with s = a+ b. c represents the carry bit of the summation.

We choose this form of the adder because it allows us to control simulation

results very easily. We will demonstrate this in chapter 6.

Opening a New Schematic

For the complete n bit adder we use a simple parameterized equation (not a; 12.2.1

recursive specification). That is the reason why we only need one equation

where we map the parameters of the subcircuits in an appropriate way. We

Section 4.8 Design of an n Bit Conditional Sum Adder 103

need no basic equation in this case. Open a new schematic CSADDER[n] by

selecting the entry Load from the -Schematics- submenu and typing this

name at the input window which pops up when you select the entry ****

New **** in the schematic list window.

Entering and Manipulating Parameterized Macros

We need three parameterized macro cells in CSADDER[n] which will be ver-

tically arranged. We begin with the shuffling of the operands a and b. The

length of the operands is n that is why we need an instance SHUFFLE[n] to

shuffle two sequences of length n. Select the entry Enter from the -Cells-

submenu . Now choose the entry --- New Cell --- from the cell list win-; 12.3.1

dow for the parameterized macros (bottom window). At the input window

type the name SHUFFLE[n] as input and move the appearing macro to a

position near to the northern border of the schematic. Before we select the

other macros we want to resize this first one. Therefore you should abort

cell selection mode by pressing the right mouse button within one of the

three popup windows.

Now select the entry Resize from the -Cells- submenu. Move the pointer; 12.3.3

into the workarea and press the left mouse button when the instance

SHUFFLE[n] is highlighted. Now you can draw the rubberbanding frame

to the new macro size. We select a small height for this macro to indicate

that it only contains wiring elements and no basic cells. If you have chosen

a size similar to that shown in figure 4.40 can should confirm the size with

the left mouse button. After that abort the cell selection mode by pressing

the right mouse button within the workarea.

Now we enter the macro for the main part of our adder which is an instance; 12.3.1

of the general equation for the conditional sum adder. Select the entry

Enter from the -Cells- submenu again in order to create a new param-

eterized macro (entry --- New Cell --- from the third popup window).

Type CSA[n] at the input window and move the macro with its upper left

corner below the instance SHUFFLE[n]. Leave enough space between the

two instances for the wiring and confirm the position with the left mouse

104 Chapter 4. The Graphical Editor

button. After that abort cell selection mode (right mouse button in one of

the popup windows) in order to resize CSA[n].

Select the entry Resize from the -Cells- submenu and move the pointer; 12.3.3

into the workarea. When the instance CSA[n] is highlighted press the left

mouse button and select a new size for this macro. Choose the same width

as for SHUFFLE[n] but make this macro much higher in order to denote that

it contains the main part of the whole adder (c.f. figure 4.40). Confirm the

new size with the left mouse button and abort any further cell selection

with the right mouse button.

The third macro we need is an instance of the cutting subcircuit. To create; 12.3.1

it select the entry Enter from the -Cells- submenu and move the pointer

onto the position --- New Cell --- in the third popup window. As shown

above the output of CSA[n] is a sequence of length 2 · (n + 1) because we

have two sums of length n and one carry bit for each of the sums. That

is the reason why we need an instance CUT[n+1] of the cutting subcircuit

(type CUT[n+1] at the popup input window). Move the new macro with its

upper left corner under the CSA[n] and leave enough space for the wiring.

After you confirm the position with the left mouse button the cell selection

windows popup again. We do not need another instance so you can abort

cell selection by pressing the right mouse button within one of the three

popup windows.

The last operation concerning the macros consists in resizing the instance; 12.3.3

CUT[n+1]. Select the entry Resize from the -Cells- submenu and move

the pointer into the workarea so that CUT[n+1] is highlighted. Confirm the

selection by pressing the left mouse button. With the help of the rubber-

banding frame we now select a new size for this macro. Choose the same

width as for the other two instances but a much smaller height than that of

CSA[n]. The height can approximately be the same as that of SHUFFLE[n]

to denote that this subcircuit only contains wiring elements as well. Com-

pare the sizes of the macros with figure 4.40 and abort cell selection mode

if they are correct (right mouse button in workarea).

Section 4.8 Design of an n Bit Conditional Sum Adder 105

Entering Wires

To draw the wiring of CSADDER[n] select the entry Enter from the -Wires-; 12.4.1

submenu. First we draw the input wires of the instance SHUFFLE[n]. Fix a

start point at the left half of the northern border of SHUFFLE[n] and move

the pointer vertically up onto the northern border of the schematic. After

fixing the end point with the left mouse button you should type @a[n] as

width of this wire to denote that it represents the first operand a of length

n. In the same way we draw a second wire from the northern border of

SHUFFLE[n] to the northern border of the schematic. This wire should be

located right beside the previous wire. For its width type in @b[n] to denote

that it represents the second operand b of length n.

Next we connect the southern border of SHUFFLE[n] with the northern

border of CSA[n]. For the width of this wire type in @ab[n] to denote that

it represents the bits of the operands a and b in alternating order as it is

generated by the shuffling subcircuit.

In the same way we draw a wire from the southern border of CSA[n] to

the northern border of CUT[n+1]. We describe the width of this wire by

@csums[n], because the output of CSA[n] is the sum and sum plus one,

preceeded by the corresponding carries.

The last wire of this schematic connects the southern border of the instance

CUT[n+1] with the southern border of the schematic. For the width of

this wire type in @csum[n] to denote that it only represents the bits of the

sum including the leading carry bit. Finally abort the enter wire mode by

pressing the right mouse button twice within the workarea.

Entering an Equation

In the wiring above we have specified the width of the input operands; 12.6.1

by the wire variables @a[n] and @b[n]. The specification of the n bit

conditional sum adder will give us the equation that @a[n] + @b[n] = 2n.

This equation is not sufficient to uniquely determine the value of the two

variables. One possible solution would be @a[n] = 2n and @b[n] = 0 but

106 Chapter 4. The Graphical Editor

this is not the desired one. To obtain a unique solution we enter an equation

about the width of the two variables. To do this select Enter from the

-Equations- submenu. In the same way as you entered a comment text

now you can type in an equation about relationships between wire variables

in the popup window. Type in @a[n] = @b[n] and press the return key.

By this equation we tell the system that the width of operand a is equal

to that of operand b. The equation is movable within the workarea like

comment text. Select an appropriate place like that shown in figure 4.40

and confirm the position by pressing the left mouse button. After that

the input window will popup again. Because we do not need any further

equation in our specification just press the return key to the empty input

window in order to abort the enter equation mode.

Figure 4.40: Graphical input for CSADDER[n] with an additional equation

for unique specification of the wire variables @a[n] and @b[n]

Saving the Schematic

You can check all the operations we used above (entering and resizing macros; 12.2.2

Section 4.8 Design of an n Bit Conditional Sum Adder 107

and entering the wires) by comparing your schematic with that shown in

figure 4.40. If everything is correct you can save the schematic into DAGDIR

by selecting the entry Save from the -Schematics- submenu.

4.8.11 Summary

Now we have completed the specification of the n bit conditional sum adder

and we will close our editing session. This can be done by simply pressing

the right mouse button within the menuline. Then the submenu for the

graphical editor will disappear and the system’s main menu is displayed

again.

Note that our design of the conditional sum adder only works for parameter

values n = 2k. If you enter any other value for n, the system may not

be able to construct the corresponding adder. For more information about

selecting parameter values you can read the section 5.8.; 5.8

Here you can stop your tour through the CADIC system by selecting the

entry Exit from the main menu. You can also proceed with using another

tool of the system in order to analyze or synthesize your design. From this

point of the manual you can skip to another chapter describing the special

tool. We recommend to you to continue with chapter 5 where the extraction

of a hierarchical representation for fixed values of the design parameters

is shown. This hierarchical representation is the basic structure for the

integrated tools. It is used to generate and visualize the results during the

design process.

108 Chapter 4. The Graphical Editor

5
Hierarchy Representation

With the help of the graphical editor the user can setup hierarchical spec-

ifications of circuits. Especially he can specify whole families of circuits.

As we have shown in chapter 4 this can be done by the graphical input

of recursive schematic equations which may depend on an arbitrary set of

parameters.

The design tools which are integrated in the graphical surface of CADIC ,

do their work on a specific member of such a circuit family. For this circuit

the system will build up a hierarchical representation which is given by

an appropriate data structure. The main aspect of this data structure is

that the circuit hierarchy is represented by a directed acyclic graph (DAG).

In this chapter we explain the properties of this DAG structure and show

how it is built. This structure results from folding the circuit hierarchy

by identifying nodes which represent the same subcircuits. We respect the

underlying tree structure in the following notations, when we characterize

the elements of the DAG as root, leaves or inner nodes.

5.1 The DAG Data Structure

For a given circuit C its DAG structure includes not only the description of

C, but also all the subcircuits S of C, the subcircuits of S and so on down

to the elements of the basic cell library. The DAG structure for C has the

following properties:

2 the root of the tree is C.

110 Chapter 5. Hierarchy Representation

2 the leaves of the tree are either elements from the basic cell library or

subcircuits which only consist of wiring components.

2 for all subcircuits S of C there exists one inner node; multiple appear-

ances of a subcircuit are represented by pointers to the corresponding

node of the tree.

Each node of the DAG structure is described by the elements shown in

figure 5.1 which we call treenode. It consists of the following components:

2 the subcircuit name, including an optional list of parameters which

are set to nonnegative integer values.

2 a key which is a unique index for all treenodes within a hierarchical

circuit description. Although the name of a treenode (with included

parameter values) is also unique over the hierarchy, an integer index

can be used better for adressing the nodes.

2 the number of instances and the corresponding list of instances which

represent the macros and basic cells on this hierarchy level. The en-

tries in each instance list are numbered from 0 to Instances-1, such

that each instance has a unique key on this hierarchy level. In the

list entries there is stored local information about the instances (e.g.

orientation).

2 the number of references which represents the number of appearences

of this treenode as an instance within the hierarchical description.

2 pointer to specific data (views) about the treenode as for example the

graph description which is created by the graphical editor and used for

the graphical display of the treenode. There are other views (netlist,

bicategorial expression, . . .), which can be generated, when they are

needed.

The hierarchical structure of a circuit is built over pointers from a treenode

to its instance list and from each instance to a corresponding treenodes at

a lower level. It is possible that more than one instance points to the same

treenode which results in the DAG structure. As mentioned above there

Section 5.1 The DAG Data Structure 111

may exist treenodes with an empty instance list which are either elements

from the basic library or simple wiring components. These treenodes build

the lowest level of the hierarchy.

Name

Key
Instances

UsedAs

0 1 k

treenode

graph
description

unique
Key

number of
instances

number of
references

list of
instances

treenode
name

Figure 5.1: Basic structure treenode of the hierarchical representation

Depending on the circuit structure, we obtain a very compact description

for even large circuits. To give you an impression: a 64 bit integer multiplier

which consists of about 50000 basic gates, can be represented by a DAG

structure of about 20 treenodes.

Figure 5.2 shows the hierarchical transition between a treenode C and the

successor treenode S. C has a list of k instances, where the ith instance rep-

resents the treenode S. If C would contain more occurences of S, there would

be further instances pointing to the treenode S. In the reverse direction in

S we count the number of occurences together with corresponding pointers

to the instances, which represent an appearence of S.

As shown in figure 5.2 there exists a reference in the instance list of a treen-

ode for each attached successor treenode, such that any path through the

hierarchical representation can be traced in a top–down direction. Addi-

tionally the data structure contains references in ascendant direction from

a treenode to all locations, where it is used as an instance and from each

112 Chapter 5. Hierarchy Representation

S

Instances

0 l

C

Key
Instances

UsedAs

Key

UsedAs

0 i k

S

Figure 5.2: Transition from an instance of a treenode at level i to the

corresponding treenode at level i + 1

instance to the treenode, to which it belongs. Thus, it is possible to traverse

the DAG structure in every desired manner. For reasons of simplicity these

upward links are not shown in figure 5.2.

The description of each hierarchy level is given by a Cgraph which either is

interactively created during an editor session or can automatically be gener-

ated by programs, e.g. logic synthesis tools ([Sch96],[Biw94]). The Cgraph

is the topographical description of the concerned circuit. Especially, it de-

scribes size information, exact wiring, signal net connections, and special

layout blocks.

From the Cgraph we can obtain a representation in form of a hierarchical

or flat netlist. It reflects the connection structure over hierarchy levels and

represents signal net connections, dimensions and relations among subnets.

This information is important for simulation tools, where we need the logical

Section 5.2 Building the DAG Structure 113

connectivity of the circuit and can abstract from the topographical layout

of the wires.

The Cgraph can also be used to create the description in form of a bicate-

gorial expression as they are introduced in section 4.2. As mentioned there

bicategorial expressions are difficult to handle by the user, because they can

become very large and unreadable. But they build the base for some efficient

design tools, as for example the place&route tool ([Kol86],[Fet95],[Wan95])

shown in chapter 9.

5.2 Building the DAG Structure

The building of the DAG structure is done in two steps. First the treenodes

for each subcircuit are created in a top–down process starting a the highest

hierarchy level. After that the pointers from the instances at each hierachy

level to the corresponding treenode are setup. If you used formal variables

for the width of wires (as in our design of the conditional sum adder), a sys-

tem of linear equations over these variables is derived from the hierarchical

structure and finally solved.

In the following we denote by (C, ϕC) a treenode C with a corresponding

list of values ϕC for its parameters. If C has no parameters, we set ϕC = ∅.

The algorithm for building the DAG structure starts with such a pair (C, ϕC)

which is pushed onto a stack. For each element on the stack there will be

performed the following steps:

2 pop the upmost element from the stack

2 check, whether there exists already a treenode for this pair; if this is

the case continue with the next element on the stack.

2 find the corresponding Cgraph for the current element. This may

be a macro cell, for which the Cgraph is located in the directory

DAGDIR or a basic cell, for which the Cgraph is stored in CELLDIR.

If it is a macro cell and the Cgraph contains elements which depend

114 Chapter 5. Hierarchy Representation

on formal parameters, these elements are evaluated according to the

current values of the treenode.

2 push all instances of the current element, i.e. all its successors in the

hierarchy, together with their parameter list onto the stack.

2 insert the just created treenode into a hash table, such that we can

check that is not creted more than once.

These steps are done as long as there are elements on the stack. As shown in

[Bur94] this process will terminate, if there is a check for a maximum hierar-

chy level which is set by the system to an appropriate value. Finally we use

the hash table to create the pointers from the instances to the corresponding

treenodes which are stored in the table.

5.2.1 A First DAG: The HalfAdder

To show you how the system will build the hierarchical data structure we will

load the examples from the editor session. In order to load the hierarchy

of circuits, you first should select the entry Hierarchy Checks from the

submenu -Analysis- within the main menu. The menu point to load the

hierarchy of a circuit is also contained in the submenus of the integrated

design tools as you will see in the following chapters. In this chapter we will

demonstrate some basic functions concerning the circuit hierarchy. After

the selection a new submenu named Hierarchy is displayed.

Load Circuit Hierarchy

To load a circuit hierarchically you must select the entry Load from the

submenu -Circuit- and press the left mouse button. After that the list

window for the circuits from the DAGDIR directory are shown as you have

already seen during your editor session. But note that the entry **** New

**** does not appear, i.e. you can not enter a new schematic, but can only

load an already existing circuit.

Select the entry HalfAdder and press the left mouse button if the name is

highlighted. If you look at the message window you can read the following

Section 5.2 Building the DAG Structure 115

system messages:

Reading Circuit Description of "HalfAdder"

Reading Dag-File: HalfAdder

Reading Dag-File: AND2

Reading Dag-File: XOR2

Total Number of Dag-Files: 3

Last Modification Date: Fri Jan 19 17:15:54 1996

CtnTypes: No matrix elements in convert matrix

Circuit "HalfAdder" loaded, Total Data Size: 7422 Bytes

These messages reflect the building of the DAG structure. The algo-

rithm starts with the element (HalfAdder, ∅), which is pushed onto the

stack. Here ϕHalfAdder = ∅, because HalfAdder has no parameters. For

this element there is a treenode created and the corresponding Cgraph is

read out of DAGDIR which corresponds to the message Reading Dag-File:

HalfAdder. After that the instances of HalfAdder, i.e. AND2 and XOR2 are

pushed onto the stack together with an empty set of parameter values. Next

the element (AND2, ∅) is read from the stack. The corresponding treenode is

created, but no successors are pushed onto the stack, because it is a basic

cell. In the same way XOR2 is treated, and after that the stack is empty, i.e.

all elements for the description of HalfAdder have been loaded. The stack

during the loading of HalfAdder is shown in figure 5.3.

(HalfAdder, ∅) −→
(AND2, ∅)
(XOR2, ∅)

−→ (XOR2, ∅)

Figure 5.3: The stack during the loading of HalfAdder

Finally the system tells you that it had to load 3 files from the directories

DAGDIR and CELLDIR and it gives you the last modification time. This is

the time of the newest file which had to be read. The message CtnTypes:

No matrix elements in convert matrix indicates that there are no for-

mal variables for the width of wires in this discription. All wires have

the constant width 1, i.e. there is no matrix for an equation system to

be solved. The last message Circuit "HalfAdder" loaded, Total Data

116 Chapter 5. Hierarchy Representation

Size: 7422 Bytes tells you the total amount of memory which is used

by the HalfAdder. This is the sum of bytes for the hierarchical structure,

i.e. the treenodes, instance lists, etc. and the Cgraphs for the graphical

representation.

After the setup of the pointers from the instances to the corresponding

treenodes the DAG for HalfAdder has the form shown in figure 5.4.

HalfAdder

Key: 0
Instances: 2

UsedAs: 0

AND2

Key: 1
Instances: 0

UsedAs: 1

XOR2

Key: 2
Instances: 0

UsedAs: 1

0 1

AND2 XOR2

Figure 5.4: DAG structure for HalfAdder

In this case we have an overhead in our description: we need three treenodes

which represent a circuit of only two basic gates. This negative effect only

appears for small circuits and will drastically change to our advantage as

you will see later.

5.2.2 More Hierarchy Levels: The FullAdder

Now we will build the DAG structure for our design of a fulladder which

contains the halfadder as a subcircuit.

Section 5.2 Building the DAG Structure 117

Load Circuit Hierarchy

Again you must select the entry Load from the submenu -Circuit- and

press the left mouse button. From the list window select the entry

FullAdder and press the left mouse button if the name is highlighted. Note

that the graphical display of the halfadder turns to grey which indicates

that its DAG structure is destroyed. In the message window the system

displays the following informations:

Reading Circuit Description of "FullAdder"

Reading Dag-File: FullAdder

Reading Dag-File: HalfAdder

Reading Dag-File: AND2

Reading Dag-File: XOR2

Reading Dag-File: OR2

Total Number of Dag-Files: 5

Last Modification Date: Fri Jan 19 17:20:55 1996

CtnTypes: No matrix elements in convert matrix

Circuit "FullAdder" loaded, Total Data Size: 14698 Bytes

Note that although the FullAdder contains HalfAdder twice, the corre-

sponding Cgraph is only read once. Here the first entry on the stack is

(FullAdder, ∅). This entry is replaced by its instances, i.e. by two ele-

ments (HalfAdder, ∅) and one element (OR2, ∅). After that the treenode for

HalfAdder is created and the first pair (HalfAdder, ∅) is popped from the

stack. For this element the steps from the previous section are applied. For

the second pair, there is done nothing, but it is removed from the stack.

The reason for this is that the treenode for HalfAdder is already created

and stored within the hash table. Finally the OR2 is loaded and popped

from the stack which has the states shown in figure 5.5 during the loading

of FullAdder.

For the fulladder, the system had to load 5 files in total. Here you see again

the message CtnTypes: No matrix elements in convert matrix, be-

cause we did not use wire variables within the fulladder design. The size

118 Chapter 5. Hierarchy Representation

(FullAdder, ∅) −→
(HalfAdder, ∅)
(HalfAdder, ∅)

(OR2, ∅)
−→

(AND2, ∅)
(XOR2, ∅)

(HalfAdder, ∅)
(OR2, ∅)

−→

(XOR2, ∅)
(HalfAdder, ∅)

(OR2, ∅)
−→

(HalfAdder, ∅)
(OR2, ∅)

−→ (OR2, ∅)

Figure 5.5: The stack during the loading of FullAdder

of the circuit hierarchy is given by Circuit "FullAdder" loaded, Total

Data Size: 14698 Bytes. After the setup of the pointers from the in-

stances to the corresponding treenodes the DAG for FullAdder has the

form shown in figure 5.6.

For the DAG of FullAdder the overhead, we had in the case of the

HalfAdder description has vanished. Figure 5.6 shows, that we need five

treenodes for the hierarchical description which also represents five basic

gates. In the next section you will see that this relation will improve to the

side of hierarchy.

5.2.3 Parameterized Levels: The 2n Bit Comparison Tree

In this section we will demonstrate how you can load a parameterized design.

The main difference to the previous two sections is that you will have to

specify nonnegative integer values for the formal parameters of the design.

Load Circuit Hierarchy

As you already know you must select the entry Load from the submenu

-Circuit- and press the left mouse button. From the list window select

the entry Tree[n] and press the left mouse button if the name is highlighted.

Note that you have selected a parameterized description with a free param-

eter n. In order to build the hierarchical data structure this parameter has

Section 5.2 Building the DAG Structure 119

HalfAdder

Instances: 2

AND2

Key: 3
Instances: 0

UsedAs: 1

XOR2

Key: 4
Instances: 0

UsedAs: 1

0 1

AND2 XOR2

FullAdder

Key: 0
Instances: 3

UsedAs: 0

OR2

Key: 1
Instances: 0

UsedAs: 1

Key: 2

UsedAs: 2

0 1 2

OR2

HalfAdder

HalfAdder

Figure 5.6: DAG structure for FullAdder

to be set to a nonnegative integer value. This is why the system pops up

the input window onto the workarea with the prompt

Enter Parameter Values for "Tree[n]":<2 >

Type in Tree[2] or simply 2 to set the value of n=2. After confirming

this entry with the return key, the previous DAG structure of FullAdder

is destroyed and the system will display the following informations in the

message window:

Reading Circuit Description of "Tree[2]"

Reading Dag-File: Tree[2]

Reading Dag-File: Tree[1]

120 Chapter 5. Hierarchy Representation

Reading Dag-File: Tree[0]

Reading Dag-File: XOR2

Reading Dag-File: OR2

Total Number of Dag-Files: 5

Last Modification Date: Fri Jan 19 17:26:08 1996

CtnTypes: (2 x 1) - Matrix

Circuit "Tree[2]" loaded, Total Data Size: 14907 Bytes

Note that all Cgraphs are loaded only once, although the level Tree[n] uses

Tree[n-1] twice and each level of the hierarchy contains one OR gate.

In contrast to the loading of HalfAdder and FullAdder the first entry on

the stack contains not the empty set as its second component. The algo-

rithm starts with the pair (Tree, n = 2). The corresponding Cgraph which

is given by the schematic Tree[n], is loaded. In the next step all elements

within this schematic which depend on the formal parameter n are eval-

uated, according to its current value n=2. The parameter is used in the

names of two instances Tree[n-1] and in the width of two wires (2^n). Af-

ter the treenode for Tree[2] is created the evaluated names of its instances

are pushed onto the stack as two pairs (Tree, n = 1) as well as the instance

of the OR gate given by (OR2, ∅) (c.f. figure 5.7).

(Tree, n = 2) −→
(Tree, n = 1)

(Tree, n = 1)

(OR2, ∅)
−→

(Tree, n = 0)

(Tree, n = 0)

(OR2, ∅)
(Tree, n = 1)

(OR2, ∅)

−→

(XOR2, ∅)
(Tree, n = 0)

(OR2, ∅)
(Tree, n = 1)

(OR2, ∅)

−→

(Tree, n = 0)

(OR2, ∅)
(Tree, n = 1)

(OR2, ∅)

−→
(OR2, ∅)

(Tree, n = 1)

(OR2, ∅)
−→

(Tree, n = 1)

(OR2, ∅)
−→ (OR2, ∅)

Figure 5.7: The stack during the loading of Tree[2]

In the next iteration of the algorithm the pair (Tree, n = 1) is popped from

the stack. The corresponding Cgraph is also given by the schematic for

Tree[n] and is now loaded again. All elements are evaluated with the new

Section 5.2 Building the DAG Structure 121

parameter value n = 1, i.e. two pairs (Tree, n = 0) are pushed onto the

stack and another OR gate and the treenode Tree[1] is stored in the hash

table.

Tree[2]

Key: 0
Instances: 3

UsedAs: 0

Instances: 1

Instances: 3

Key: 3

UsedAs: 2

0 1 2

OR2

Key: 1
Instances: 0

UsedAs: 2

Tree[0]

Tree[1]

Key: 2

UsedAs: 2

UsedAs: 1

XOR2

Key: 4
Instances: 0

0

0 1 2

OR2

Tree[1]Tree[1]

4 4

OR2

Tree[0]Tree[0]

2 2

XOR2

Figure 5.8: DAG structure for Tree[2]

Now the algorithm has to manage the pair (Tree, n = 0), for which the

corresponding Cgraph is given by the schematic Tree[0]. Note that the

algorithm does not read in the general equation Tree[n] again. It takes

Tree[0], because the fixed parameter value 0 is more restrictive than the

122 Chapter 5. Hierarchy Representation

free parameter n. We call this choosing the best matching schematic. After

reading Tree[0] there are no evaluations needed, because all elements are

fixed. The only instance of Tree[0] is an EXOR gate, such that the pair

(XOR2, ∅) is pushed onto the stack. Finally the treenode Tree[0] is stored

in the hash table.

From this point the algorithm only has to read the basic gates XOR2 and OR2

to complete the hierarchical structure. All other components on the stack

are already created, such that they can be removed without any further

operation. After creating the links between the instances of each hierarchy

level and the corresponding treenodes we get the DAG structure shown in

figure 5.8.

In the example of the comparison tree the hierarchical description is already

smaller than the flat representation of the circuit. Figure 5.8 shows, that we

need five treenodes for the hierarchical description of Tree[2] which also

represents seven basic gates. If we would build the DAG for the next level,

i.e. for Tree[3], we would create only one additional treenode. But the

whole DAG structure for Tree[3] represents 15 basic gates.

In general we have 3 + n treenodes in the DAG of the 2n bit comparison

tree (n > 0) which consists of 2n+1 − 1 gates, i.e. we have a description of

logarithmic size.

5.3 A Larger Design: The 16 Bit Conditional Sum

Adder

While we have loaded some small designs in the previous sections in order

to explain the algorithm for building the DAG structure, we will now use

a larger circuit to show some other useful function concerning the circuit

hierarchy. Especially you will see, how the equation system for the wire

variables is extracted and solved.

Section 5.3 A Larger Design: The 16 Bit Conditional Sum Adder 123

Load Circuit Hierarchy

We will explain the hierarchy operations with the help of a 16 bit conditional

sum adder. First we have to load this element from our parameterized

specification of the n bit conditional sum adder. To do this you have to

select the entry Load from the submenu -Circuit- and press the left mouse

button. From the list window select the entry CSA[n] and press the left

mouse button if the name is highlighted.

Again you you have selected a parameterized description with a free param-

eter n. In order to build the hierarchical data structure this parameter has

to be set to a nonnegative integer value within the input window:

Enter Parameter Values for "CSA[n]":<16 >

Type in CSA[16] or simply 16 to set the value of n=16. After confirming this

entry with the return key the system will display the following informations

in the message window:

Reading Circuit Description of "CSA[16]"

Reading Dag-File: CSA[16]

Reading Dag-File: SEL[9]

Reading Dag-File: SEL[4]

Reading Dag-File: SEL[2]

Reading Dag-File: SEL[1]

Reading Dag-File: MUX

Reading Dag-File: SEL[5]

Reading Dag-File: SEL[3]

Reading Dag-File: CSA[8]

Reading Dag-File: CSA[4]

Reading Dag-File: CSA[2]

Reading Dag-File: CSA[1]

Reading Dag-File: XOR2

Reading Dag-File: INV

Reading Dag-File: AND2

Reading Dag-File: OR2

124 Chapter 5. Hierarchy Representation

Total Number of Dag-Files: 16

Last Modification Date: Thu Jan 25 17:08:34 1996

CtnTypes: (45 x 38) - Matrix

Circuit "CSA[16]" loaded, Total Data Size: 64813 Bytes

You already know the meaning of these messages from the previous read-

ing with the exception of the line CtnTypes: (45 x 38) - Matrix. This

indicates that a 45 × 38 matrix has been setup from the equations about

the wire variables. The position of this message in the output during the

loading of the circuit implies that the system of equations over the wire

variables is solved after the DAG structure has been built. At this time all

elements which directly depend on the circuit parameters are evaluated. For

the wire variables this means that their indices (if existing) are replaced by

nonnegative integer values. The value of a variable depends on the values

of the circuit parameters and the values of the other wire variables. This

second dependency is calculated now by extracting and solving a system of

linear equations over the variables.

In the following we will show how these equations can be derived from the

hierarchical specification.

5.3.1 A System of Linear Equations for the Wire Variables

To explain how the equations about the wire variables are extracted we

examine the hierarchy transitions from the instances on one level to their

successor treenodes as it is shown in figure 5.9. There we have the hierarchy

level of the treenode CSA[8], which contains three instances, namely two

occurences of CSA[4] and one SEL[5]. After the evaluation step we have the

wire variables @high[8], @low[8], @highsum[8], @lowsum[8] and @carry

in the corresponding Cgraph. Each of these variables represents a certain

number of parallel binary wires of width 1.

On the next lower level CSA[4] we have the variables @high[4], @low[4],

@highsum[4], @lowsum[4] and @carry. In the Cgraph of SEL[5] there are

the variables @selinL[5], @selinR[5], @seloutL[5], @seloutR[5] and

Section 5.3 A Larger Design: The 16 Bit Conditional Sum Adder 125

SEL[2]SEL[3]

@selinL[5]

@seloutL[5]

@carry@carry

@selinR[5]

@seloutR[5]Instances: 3
Key: 3

UsedAs: 2

0 1 2

CSA[4]

CSA[8]

Key: 2
Instances: 3

0 1 2

UsedAs: 2

0 1

UsedAs: 2UsedAs: 2

SEL[5]

Key: 4
Instances: 2

0 1 2

CSA[2]CSA[2]

SEL[3]

@high[4]

@carry
@highsum[4]

@highsum[4]

@lowsum[4]

@low[4]

CSA[4]CSA[4]

SEL[5]

@high[8]

@carry@highsum[8]

@highsum[8]

@lowsum[8]

@low[8]

(1)

(2)

(3)

(4)(5)

(6)

(7) (8)

(1),(3)

(2),(4)

(5)

(6)

(7) (8)

Figure 5.9: Deriving equations about the wire variables

again @carry.

For the correct connection of the wires on one hierarchy level to the wires

on the successor level, it is necessary that all the single binary wires can be

connected in the right way. This is only possible, if the number of single

wires at level i is equal to the number of single wires at level i + 1. This

leads to the condition that the sum of wire variables connected to the outer

border of an instance is equal to the sum of wire variables connect to the

schematic border (inner border) at the corresponding side.

In figure 5.9 this means that the variable @high[8] which is connected to

the northern border of the left instance CSA[4] in the Cgraph for CSA[8],

must be equal to the sum @high[4]+@low[4] which are connected to the

northern border of the Cgraph for CSA[4]. In figure 5.9 this condition is

indicated by the small number 1 which identifies these borders as the first

equation.

The corresponding transition at the northern border of the left instance

126 Chapter 5. Hierarchy Representation

CSA[4] gives us the equation

(1) @high[8] = @high[4] + @low[4].

In the same way we examine the southern border of this instance (condi-

tion 2). Here we have the variable @highsum[8] at the level CSA[8] and

the variables @highsum[4] and @lowsum[4] at the southern border of the

schematic for CSA[4]. This leads to the equation

(2) @highsum[8] = @highsum[4] + @lowsum[4].

The northern border of the right instance CSA[4] gives us the third condi-

tion. Note that the right side of this equation is given by the same sum of

wire variables as in the first equation, because this is a second occurence of

the treenode CSA[4]. We receive

(3) @low[8] = @high[4] + @low[4].

If you examine the remaining borders of the instances in CSA[8] you will

easily find the equations

(4) @carry + @lowsum[8] = @highsum[4] + @lowsum[4]

(5) @highsum[8] = @selinL[5] + @selinR[5]

(6) @highsum[8] = @seloutL[5] + @seloutR[5]

and the trivial equation

(7,8) @carry = @carry.

If we only get such equations between variables, the equation system would

have the trivial solution, that all variables are set to 0. This is not the case

for the lowest hierarchy transitions as shown in figure 5.10.

Here the northern border of the left CSA[1] implies the equation

(1) @high[2] = 2.

The remaining borders of the two CSA[2] instances give us the equations

(2) @highsum[2] = 4

(3) @low[2] = 2

Section 5.3 A Larger Design: The 16 Bit Conditional Sum Adder 127

SEL[1]SEL[1]

@selinL[2]

@seloutL[2]

@carry@carry

@selinR[2]

@seloutR[2]Instances: 4
Key: 7

UsedAs: 2

0 1 2 3

CSA[1]

CSA[2]

Key: 6
Instances: 3

0 1 2

UsedAs: 2

0 1

UsedAs: 2UsedAs: 5

SEL[2]

Key: 8
Instances: 2

0 1 2

CSA[1]CSA[1]

SEL[2]

@high[2]

@carry
@highsum[2]

@highsum[2]

@lowsum[2]

@low[2]

(1)

(2)

(3)

(4)

(1),(3)

(2),(4)

AND2 INVOR2 XOR2

Figure 5.10: Equations for the wire variables at the lowest hierarchy level

and

(4) @carry + @lowsum[2] = 4.

When the whole equation system is solved, these basic values of the vari-

ables are propagated to the higher levels of the hierarchy. As the message

CtnTypes: (45 x 38) - Matrix indicates the whole equation system for

the CSA[16] includes 45 equations over 38 variables.

If the system can solve the equation system the wire variables are substi-

tuted by the calculated values and now shown as integer values. After the

loading of CSA[16] you will see the highest hierarchy level as it is shown in

figure 5.11. All wires have a constant width as well as all parameters of the

macro names are evaluated to integer values.

There are some cases, where the system of equations can not be solved:

2 all values for the wire variables must be nonnegative integer numbers.

2 the system is indeterminable, i.e. there are some variables without a

128 Chapter 5. Hierarchy Representation

Figure 5.11: Evaluated wire variables at the top level of CSA[16]

unique solution.

2 the system has no solution.

We will illustrate the first case with the help of the following example spec-

ification. If you look at the hierarchy transition shown in figure 5.12, you

can extract the following equations from the borders of the subcircuit S:

@s + @s = @t

3 + @u = 1 + @t

@u = 1

The trivial equation at the western border of S can be neglected. If we solve

this system of three equations over three variable, we get the solution

@s = 1.5, @t = 3, @u = 1

It is obvious that the value for @s is not a legal wire width. In such cases

the system will respond with a message

Section 5.3 A Larger Design: The 16 Bit Conditional Sum Adder 129

S

Instances

C

Key
Instances

UsedAs

Key

UsedAs

0

S

@s @s

3
@u

@u

1

1

1

@t

Figure 5.12: Specification with illegal solution for the system of linear equa-

tions over its wire variables

Error: Value for Wire Variable @s is illegal

The DAG structure for the current circuit can not be used for any other

design step in the system. You first have to fix the specification by calling

the schematic editor.

Display Equations for Wire Variables

With the help of the function Eqtns from the submenu -CGraph- you can

control the equations, which are implied by the hierarchy transitions at the

borders of the instances. After selecting this menu point the system will

display the equations within the schematic as it is shown in figure 5.13.

In figure 5.13 you see the highest level CSA[16] of the 16 bit conditional

sum adder. According to the considerations from above you can see the

equation

130 Chapter 5. Hierarchy Representation

Figure 5.13: Display of the equations about the wire variables

@high[16] = @high[8] + @low[8]

at the northern border of the left CSA[8] and

@highsum[16] = @highsum[8] + @lowsum[8]

at the southern border. The left side of the equation represents the sum

of the wire variables at the current hierarchy level and the right side is the

sum of the variables at the successor level.

Note that at the borders of basic cells there are no equations shown, because

each wire has a constant width and is connected to exactly one pin of the

instance.

After you have executed the function Eqtns the system automatically re-

turns to the menu selection mode. The display mode for the equations will

be active until you turn it off by selecting the menu point Eqtns again.

Then the display mode is toggled and after a refresh of the workarea the

equations at the borders of the instances will disappear.

Section 5.3 A Larger Design: The 16 Bit Conditional Sum Adder 131

Display the Wire Variables

After the system of equations has been solved, the wire variables are substi-

tuted by the calculated values. If you want to check the values of the vari-

ables, you can use the function Types from the submenu -Cgraph-. After

the selection of this menu point the names of the variables are displayed at

every wire as it is shown in figure 5.14.

Figure 5.14: Display of the names of wire variables

Together with the display mode for the equations this function helps you to

check the values of the wire variables. These two functions are very helpful

to check the specification especially, if you use them in cooperation with the

tracing functions, which are explained in section 5.6.

After you have executed the function Types the system automatically re-

turns to the menu selection mode. The display mode for the variable names

will be active until you turn it off by selecting the menu point Types again.

Then the display mode is toggled and after a refresh of the workarea the

names of the variables at the wires will disappear.

132 Chapter 5. Hierarchy Representation

5.3.2 A Note on Wire Variables

The most important aspect of the specification level of the graphical editor

is the possibility to describe whole families of circuits with a fixed set of

schematic inputs. This can be realized by the use of parameterized macro

cells and bundles of wires. The width of a bundle of wires can be given in

two different ways:

2 by an arithmetical expression over the set of circuit parameters

2 by a formal wire variable which may be indicated by arithmetical

expressions

If we only allowed the use of arithmetical expressions for the width of wires,

this would have the disadvantage, that the user had to derive complicated

expressions within a recursive circuit description. This can easily lead to

mistakes in the specification. Here the use of formal wire variables has

ernormous advantages:

2 the user chooses a variable name for a bundle of wires and leaves it

to the system to derive the values of the variables after the circuit

parameters are given integer values.

2 with the help of wire variables the user can describe algorithmic struc-

tures which are the base of some circuits. Especially these structures

can be specified independently of basic operations.

An example for such a generic circuit is an odd–even-mergesort net-

work which can be specified independently of the type of elements it

should sort. The type (e.g. boolean, 32 bit integer, etc.) of the el-

ements is simply represented by an appropriate wire variable @t. To

configure the sorting network for a certain type of elements, the user

has to give a basic compare function for two elements.

2 the wire variables can be characterized as global variables. This can

be used to setup relations between independent components of a cir-

cuit specification. Especially this can be used to describe reusable

structures and configure them within a larger description be specify-

Section 5.4 Visualization of the DAG Structure 133

ing additional equations about the wire variables.

5.4 Visualization of the DAG Structure

In this section we introduce some functions which will visualize the DAG

structure of the circuit hierarchy according to the transitions from instances

on one level to the treenodes at the next lower level.

Display of the DAG Structure

The function Show from the -Hierarchy- submenu will display the hierar-

chical structure of the loaded circuit. After the selection of this menu point

a new window frame will appear on your screen which can be moved around

and dropped by pressing the left mouse button. This behaviour depends

on your window manager (e.g. twm or fvwm) and in some cases the window

will be automatically displayed (e.g. mwm).

In the open window the DAG structure of the circuit is displayed as it is

shown in figure 5.15 for our example of the 16 bit conditional sum adder.

Figure 5.15: Visualization of the DAG structure for CSA[16]

In the window, the hierarchical structure of CSA[16] in form of the DAG

data structure is shown. The folded structure is broken up for better visu-

alization, but each node is refined only once. For example, there are two

134 Chapter 5. Hierarchy Representation

nodes CSA[8] as successors for CSA[16] but only the left one is refined. In-

ternally each node in the visualization corresponds to exactly one treenode,

whereas nodes with the same name represent the same treenode.

In our example the root of the structure is the instance CSA[16], which is

followed by two instances CSA[8] and one instance SEL[9]. CSA[8] consists

of two instances CSA[4] and one instance SEL[5], while SEL[9] is composed

of SEL[5] and SEL[4], etc. In the lowest level of the structure, it is shown

that CSA[1] contains four basic cells: OR2, AND2, INV and XOR2 as well as

SEL[1] contains two instances of the basic cell MUX. Thus, the specification

of a design consists of one recursive and several simple equations. Such a

refinement also defines a very compact hierarchical representation.

Since e.g. a 16 bit adder consists of two 8 bit adders, four 4 bit adders etc.,

we can represent it by storing the representation of each part only once.

Changing the Visible Area

The size of the window for the visualization of the hierarchical structure

is fix, i.e. it does not depend on the size of DAG. But you can scroll the

visible area and select the part of the DAG you are interested in.

As you can see in figure 5.16 the window for the DAG structure is devided

into a 3 × 3 grid. If you press the second mouse button within one of

these nine parts of the window, the corresponding action from figure 5.16 is

performed.

For example if you want to scroll the DAG structure to the right, you must

press the second mouse in the left field in the middle row.

Zooming the Visualization of the DAG

If you want to change the graphical representation of the DAG, you can

resize the nodes with the help of the functions Zoom In and Zoom Out from

the -Hierarchy- submenu.

You can enlarge the size of the nodes by selecting Zoom In. You can re-

peatedly press the left mouse button until you obtain an ideal size of DAG.

Section 5.5 Hierarchy Check 135

down
right

up
right

up
left

down
leftdown

up

right left

Figure 5.16: Grid of the hierarchy window for scrolling the visible area

In the same way you can shrink the size of the node with the help of the

function Zoom Out. If the size of the nodes becomes to small, the names of

the treenodes are no longer displayed. Sizing down a very large DAG can

give you a hint about the balance of the hierarchical description, i.e. if the

hierarchy is very deep (many different hierarchy levels) or very wide (many

instances at one hierarchy level).

Note: when you use the functions Zoom In and Zoom Out from the submenu

-Hierarchy- within a scrolled DAG, this scrolled DAG will first return to

its initial position, and then perform the zooming operation.

If you want to close the hierarchical structure window, move the pointer into

this window and press the right mouse button. This operation terminates

the Show mode, and you return to menu selection mode again.

5.5 Hierarchy Check

After you have completed the design of a circuit you should check whether

its hierarchical specification is correct or not. Of course, the system can

only help you to check the syntactical correctness of a circuit. In our case

this means that CADIC provides a function, which checks, whether all wires

connected to an instance have a corresponding wire inside the Cgraph of

this instance. With this function you can not check, if your circuit computes

136 Chapter 5. Hierarchy Representation

the desired values. The task to check the logical or timing behaviour of the

circuit falls to simulation tools.

Because the number of external connectors at each border of an instance

which may be a basic cell, macro or parameterized macro, must be equal to

the number of its internal connectors, this is a powerful check to find out

whether the recursive specification is free of errors.

Errors can occur, if for example the designer uses arithmetical expressions

for the width of wires within a recursive description. The used expressions

may not be correct for all iterations of the recursion, such that there are

different values of “outer” and “inner” bundles of wires at some instance

borders.

If you use variables for the width of wires, the values of these variables are

calculated by solving an appropriate system of linear equations. This system

may not have a unique solution, such that there are conflicting equations for

some variables. These conflicts result in different numbers of wires at the

instance borders. Errors can also occur, if you use variables and arithmetical

expressions together in a description.

The hierarchical check function helps you to find instance borders, where the

wires are not connected properly. The detected border must not necessary

contain the errornous specification, because the same variable may be used

elsewhere in the hierarchical design.

Check the Hierarchical Specification

In order to check the loaded circuit CSA[16], move the pointer onto the

push button named Check from the submenu -Hierarchy- and press the

left mouse button.

If the specification, i.e the recursive definition, is correct, the following in-

formation is displayed in the message window:

Specification is correct.

Note: If the specification is correct, it only shows that the specification is

Section 5.5 Hierarchy Check 137

correct for the given parameter values, but not in general. For instance,

in the above example the syntactical correctness of the specification for

CSA[16] and its lower hierarchy levels, i.e. CSA[8], CSA[4], SEL[9], . . .,

is checked, but it is not sure, whether CSA[32] is also correct. It means

that you should check a parameterized specification for a set of parameter

values.

If there is an incorrect specification in an instance, the corresponding border

of the instance will change the color from red to pink, and two numbers will

be displayed at both sides of the border, one being the number of internal

wires and the other being the number of external wires. At the same time,

a corresponding error message will be displayed in the message window.

Here, we give an example to explain the function Check. Suppose that you

made an error during the specification of the schematic CSA[n], as shown in

Figure 5.17, where the small wire from the western border of SEL[n/2+1]

is forgotten. If you compare figure 5.17 to that from our editor session, you

see that this small wire is needed to project the carry wires to an open end.

The width of this wire is denoted by the variable @carry.

If you want to control the behaviour of CADIC in this situation, you can

go back to the graphical editor, load the schematic CSA[n] and remove this

wire with the help of the function Delete from the submenu -Wires-. After

that save the schematic back to DAGDIR with the function Save from the

submenu -Schematics-. Then you can return to the Hierarchy menu by

pressing the right mouse button within the editor submenu and selecting

the hierarchy menu again.

If we load the circuit CSA[16] again and check it, the following informations

are displayed in the message window:

Error in hierarchical Specification:

In Treenode CSA[8] Instance SEL[5] has 12 Pins and 10 Pads

on Side Northside

Error in hierarchical Specification:

138 Chapter 5. Hierarchy Representation

Figure 5.17: An error in the schematic CSA[n] at the western border of the

instance SEL[n/2+1]

In Treenode CSA[8] Instance SEL[5] has 12 Pins and 10 Pads

on Side Southside

Error in hierarchical Specification:

In Treenode CSA[2] Instance CSA[1] has 2 Pins and 4 Pads

on Side Southside

Error in hierarchical Specification:

In Treenode SEL[2] Instance SEL[1] has 0 Pins and 2 Pads

on Side Eastside

and some more. The check report shows that there are errors in the hierar-

chical specification for CSA[16]. You can already see this in the schematic

of the topmost hierarchy level. Here the carry wire from the right instance

CSA[8] to the eastern border of the selection subcircuit SEL[9] has disap-

Section 5.5 Hierarchy Check 139

peared. This means that the system has set the value of the variable @carry

to 0 and then has removed this wire. The equation system derived from the

hierarchy transitions implies that @carry=0, but this leads to further con-

flicts in the hierarchical descriptions. These conflicts are given in the check

report.

The first message tells you that there is an error in the hierarchy level

CSA[8] at the instance SEL[9]. According to our manipulation from above

this instance has 12 pins, i.e. there are 12 single binary wires connected at

the “outer” border of the instance, and 10 pads, i.e. only 10 binary wires

are connected to the border of the corresponding schematic.

Figure 5.18: Visualization of specification errors at the hierarchy level

CSA[8]

You can see in figure 5.18 that there is an error prompt 12<>10 at the

northern and the southern border of the instance SEL[5]. The symbol

< represents the number of external connections (pins), and the symbol

> denotes the number of internal connections (pads). The error prompt

140 Chapter 5. Hierarchy Representation

12<>10 indicates that there are twelve external and ten internal connections.

Note: because the schematic in figure 5.18 is not at the highest hierarchy

level of the circuit, you have to go down into this level first. This can be done

with the help of the tracing functions which are explained in section 5.6. In; 5.6

the list of messages from above there are further errors at lower hierarchy

levels. To look at the corresponding instance borders you must use these

functions for tracing through the hierarchy levels.

If there are some errors in the specification of your circuit, you must return

to the Schematic Editor and correct these errors. In the menu selection

mode, you can obtain the main menu by pressing the right mouse button

in the menu window. Then call the editor by selecting Schematic Editor

from the main menu.

Note: Only if the specification is correct according to the hierarchy check,

you can use the integrated tools for further processing the design.

5.6 Navigation through the Hierarchy

With the help of the functions from the submenu -Tracing- you can con-

veniently trace through the DAG structure of a hierarchical design. Tracing

down through the hierarchy means following the pointers from an instance

at one level to the corresponding treenode at the next lower level. Each

tracing down operation is pushed onto a stack, such that the complete path

from the root of the design to the current treenode is stored. Tracing up

means to go back one step on the path, i.e. to pop the upmost element from

the trace stack and make it the current treenode.

Tracing Down

From the highest level of our 16 bit conditional sum adder CSA[16] we

will now trace down into one of its instances. Because the trace stack is

empty for the root of the DAG you can only use the trace down function.

Select the entry Down from the submenu -Tracing- and press the left mouse

button. Then you are in cell selection mode in order to pick the instance,

Section 5.6 Navigation through the Hierarchy 141

into which you want to descend. As you already know from the editor

session the currently selected instance is highlighted in blue during your

motion through the workarea.

Select the instance SEL[9] in this way and press the left mouse button.

The schematic for CSA[16] disappears from the workarea and the Cgraph

for SEL[9] is displayed instead (c.f. figure 5.19).

Figure 5.19: Tracing down from CSA[16] into SEL[9]

The new schematic shows that the macro cell SEL[9] consists of the two

instances SEL[5] and SEL[4]. The cell selection mode is still active, such

that you can choose another instance to trace into. For example, you can

further trace into the instance SEL[4] by moving the pointer near to it

and then confirming the selection with the left mouse button. Now the

schematic SEL[9] is replaced by its successor SEL[4] which is given by the

same Cgraph but evaluated with a different parameter value.

From this level you should continue to trace down. In SEL[4] select the

left instance SEL[2] and in the following schematic pick the right instance

142 Chapter 5. Hierarchy Representation

SEL[1]. After you have selected this instance the schematic shown in fig-

ure 5.20 appears in the workarea. It shows that SEL[1] consists of two basic

cells MUX. Now you are at the lowest level of the hierarchy of our 16 bit con-

ditional sum adder CSA[16]. The cell selection mode is still active which

you can watch by moving the pointer from one multiplexer to the other.

But selecting one of these instances by pressing the left mouse button has

no effect, because there is no further hierarchy level to be displayed.

Figure 5.20: Tracing down from SEL[2] into SEL[1] and arriving at the

lowest hierarchy level

If you want to abort the function for tracing down, you can move the pointer

into the workarea and press the right mouse button. Then you return to

the menu selection mode again.

Tracing Up

If you are at a level of the DAG structure except the root level you can use

the function for tracing up to go back some levels on the tracing path. In our

Section 5.6 Navigation through the Hierarchy 143

example from above we have reached to lowest level SEL[1] of the CSA[16].

To go back one step and show the schematic of the previous hierarchy level

select the entry Up from the submenu -Tracing- and press the left mouse

button. Then the level SEL[2], where we have selected the right instance

SEL[1] is displayed in the workarea.

You can perform further trace up steps by selecting this entry again and

again until the trace stack is empty, i.e. you have returned to the root level

of the hierarchy.

Show Tracing Path

While you are tracing the hierarchical design you can view the current

tracing path in order to understand the folded structure of the circuit. To

do this select the entry Path from the submenu -Hierarchy-. After that

a new window appears on the screen. Depending on your window manager

you can move it anywhere and drop it by pressing the left mouse button.

This window named Trace View shows all schematics, which have been

selected on the current tracing path. In our example, where we traced

to down to the lowest level SEL[1] and then one step up you see four

schematics in the window. In each schematic except of the last there is one

instance highlighted in blue. This indicates the selected instance at this

level, for which the next schematic represents its Cgraph. The last shown

schematic is the current level of the hierarchy which is displayed in the

workarea (c.f. figure 5.21).

In figure 5.21 you can see that the current trace path is CSA[16]−→SEL[9]

−→SEL[4]−→SEL[2].

After the trace view window is displayed on the screen you return to the

menu selection mode and can perform further tracing operation. For ex-

ample select the entry Down from the submenu -Tracing- again and step

into the left instance SEL[1] of the current hierarchy level. Watch the trace

view window, where the schematics are rearranged such that the new level

is also shown. In the previous level SEL[2] you can see the selected instance

144 Chapter 5. Hierarchy Representation

Figure 5.21: Trace view window with path from CSA[4], then SEL[3] to

SEL[1]

SEL[1] now being highlighted in blue.

In the same way you can trace up on the current tracing path. If you do

this you can watch the corresponding schematic disappear from the trace

view window and the previously highlighted instance is redrawn in normal

mode.

If you want to close the trace view window, move the pointer to the submenu

-Hierarchy- and select the button Path again. Then, the Trace View

window disappears and you return to the menu selection mode again.

The tracing operations are essential for the work with CADIC . They allow

you to inspect the hierarchy of a design in every desired way. In combi-

nation with the visualization of design results they are a powerful method

for analyzing a circuit. We will use the tracing functions with nearly every

integrated tool as you will see in the following chapters.

Section 5.7 Examining the Cgraph 145

5.7 Examining the Cgraph

The Cgraph represents the topographical description of a circuit and gives

its precise characterization which is sufficiently abstract by suppressing ge-

ometrical and physical details and which is sufficiently concrete to control

the arrangement of cells and the global routing of wires. The description

contains sizing informations as well as exact connections and special layout

blocks. This information given in the Cgraph is used by the integrated syn-

thesis tools (layer assignment, power supply, place&route, etc.). Whereas

the tools for analyzing the circuit (logic simulation, timing analysis, etc.)

do not depend on the topographical information, but they use the logical

structure of the circuit which can be extracted from the Cgraph description.

The functions we introduce in this section help you to examine the Cgraph

structure of a given circuit. Normally you will not need to use these func-

tions, they are for checking the Cgraph structure, if you write your own

programs to create a Cgraph. If there are some errors in a design, the

CGraph functions can be used to check it and trace the design so as to help

find out these errors.

Scan of a Hierarchy Level

With the function Scan from the submenu -CGraph- you can scan the

Cgraph of the currently displayed hierarchy level. After activating this

function you are in node selection mode. You can notice that by moving

the pointer near to a node of the current Cgraph, for example to the corner

of an instance, to a pin or the branching of a wire, etc. If the distance to a

node is less than a certain tolerance value there will appear a small square

surrounding the node in order to mark it as the currently selected one.

In our example of the 16 bit conditional sum adder we are at the topmost

hierarchy level. Move the pointer near to the first pin at the southern border

of the right instance CSA[8]. The wire connected at this pin represents

the carry wires from the lower part of the adder to select the appropriate

version of the sum of the higher part. Press the left mouse button, if the

pin is surrounded by the small square mark. Now, a new window, called

146 Chapter 5. Hierarchy Representation

Cgraph Window, appears close to this node, as shown in Figure 5.22.

Figure 5.22: Cgraph window with node informations

The Cgraph window contains various Cgraph information about the selected

node, such as its number, name, position, type and relation to the adjacent

edges of the graph and the neighbour nodes. In detail there are the following

informations shown in the Cgraph window:

2 node number – the internal number of this node in the Cgraph of the

current treenode.

2 node name – the name of this node. If the node is a pin from an

instance, its name is the same as the pin name, for example, I1 from

the basic cell AND2 or n[0,15] from the instance CSA[8]. If the node

is a pad at the border of the schematic, the node name is composed by

the side to which it belongs and an interval that describes the position

and the width of the pin. The order of the interval is from left to right

at the northern and the southern borders and from top to bottom at

the eastern and the western borders of the schematic, such that the

Section 5.7 Examining the Cgraph 147

second northern pad of schematic CSA[16] is named n[16,31]. If

the node is a nominal node, such as a wire crossing or a corner of an

instance or the schematic border, the node has the name dummy to

indicate that its name is not of interest.

2 position – the coordinate (x,y) of the node. Since the schematic is

enclosed by the coordinates of its four corners which are indicated

by (0.0, 0.0) for the upper left corner, (0.0, 1.0) for the lower left

corner, (1.0, 0.0) for the upper right corner, and (1.0, 1.0) for the

lower right corner, the positions of the nodes of the Cgraph are within

these intervals. Note that two nodes must not be located in a same

place.

2 key – an index for the nodes to classify them to signal nets, i.e. all

nodes belonging to the same signal net have the same key. This infor-

mation is calculated while the data structure for the netlist is created.

Initially all nodes have the key -1.

2 instance – the name of the instance to which the node belongs. If the

node is a nominal node, such as a wire crossing or a corner, the node

points to no instance and the entry will be NULL.

2 type – the type of the node. There are the following types of nodes

classified:

(a) I – Input pin

(b) i – Input pad

(c) O – Output pin

(d) o – Output pad

(e) W – Wire crossing, branch, knee

(f) C – Corner

(g) S – VSS (−)

(h) D – VDD (+)

148 Chapter 5. Hierarchy Representation

(i) U – Unspecified pin

(j) u – Unspecified pad

2 relation graph – the numbers of adjacent edges and neighbour nodes.

In the Cgraph window the small rectangles represent the edge which

connected to the current node in this direction. The square at the end

of this edge represents the node at this position in the Cgraph.

In our example, the node is the first pin at the southern border of the right

instance CSA[8] in the schematic CSA[16]. Its internal number is 22. The

name is s[0,1] since the connected wire is a bundled wire of width 2. Its

position coordinate is (0.60520607, 0.46072508). The instance to which

it belongs is CSA[8]. The key is -1 because the netlist is not yet calculated.

The node type is U because the node is a unspecified pin. In the relation

graph, you can see that the western adjacent edge has the internal number

27 which is further linked to the node 15. In the same way the eastern

adjacent edge has number 30 and its end node is 25. At the southern side

the selected node has the neighbour node 24 which is connected via the

edge with the number 25.

From the current selected node you can scan to another adjacent node. From

the node 22 you can easily move to the node 24 by simply pressing the left

mouse button within the square surrounding the node number. Then the

current Cgraph window is cleared and moved near to the newly selected

node, where it displays the updated informations. In this way you can

continue to scan through the whole Cgraph of the current hierarchy level.

If you want to close the Cgraph window and quit the Scan function, move

the cursor into the Cgraph window and press the right mouse button. Then,

the Cgraph window disappears and you return to the menu selection mode

again.

Select a Cgraph Node by its Number

If you know the internal number of a node you want to examine, you can

select the entry Node from the submenu -Cgraph-. Then an input window

Section 5.8 Wrong Parameter Values? 149

pops up the working area with the following prompt (c.f. figure 5.23):

Please enter Node-Number : <25 >

Type in the number of the node and press the return key. If a node with the

given number exists the Cgraph window is opened nearby and shows the

information mentioned above. If you would like to read the informations of

another node, close the Cgraph window first by pressing the right mouse

button within it. Then activate the menu entry Node again for a new node

number.

Note: During this function you can not scan the whole schematic by pressing

the left mouse button within the squares for the neighbour nodes. If you

move the cursor into the square frame of an adjacent node in the Cgraph and

press the left mouse button, the input window pops up again, and prompts

you to enter the number for the next node.

If you want to close the Cgraph window and exit the function Node, you

should first return to the input prompt situation. Move the cursor into the

Cgraph window and press the left mouse button, the input window then

appears. If you press the return key to the empty input window you return

to the menu selection mode again.

5.8 Wrong Parameter Values?

Be careful with the values for the formal parameters of a specification. If

you choose wrong values for the parameters, the system may not be able to

further process the design.

For example the design of our n bit conditional sum adder from chapter 4

is only suited for parameter values n = 2k. This is the case, because in the

general equation CSA[n] we use two instances CSA[n/2], i.e. we devide the

parameter n by 2 at ech iteration of the recursive description. This is only

possible, if the initial value for n is a power of 2.

If you would load the circuit CSA[13] the system would do this, but the

DAG structure has errors at the hierarchy transitions. You can find these

150 Chapter 5. Hierarchy Representation

Figure 5.23: Input window with the prompt for showing the information of

a specified node

errors with the help of the check functions from section 5.5. You should al-; 5.5

ways remember, for which set of parameter values your specification works

fine. The specification level of the graphical editor provides a lot of func-

tions, such that you also can manage more complicated recursions (not only

reductions from n to n/2). The whole collection of expressions for manipu-

lating the circuit parameters are given in section 12.; 12

5.9 Views

With the functions Zoom In and Zoom Out from the -Views- submenu

you can select a viewport and change the graphical representation of your

schematic.

Section 5.9 Views 151

Zoom In

If you activate the function Zoom In you are in viewport selection mode.

Now move the pointer into the workarea and select a start point for a rect-

angular viewport. This must not be the upper left corner of the viewport,

according to the selection of the second point it will be interpreted appropri-

ately. After fixing the start point by pressing the left mouse button, move

the pointer to the position of the opposite corner of the desired viewport.

You notice a rubberbanding frame following the motion of the pointer. This

frame indicates the size of the selected viewport and implies the factors by

which the schematic will be scaled.

If you confirm the selection of the opposite corner by pressing the left mouse

button, the schematic will be scaled and redrawn. The upper left corner

of your selected viewport will be moved into the upper left corner of the

workarea. You remain in viewport selection mode for further zooming op-

erations. Each zooming operation is pushed onto a zooming stack, so that

we can return to any previously selected viewport. The currently active

viewport will be shown in the control window as a small yellow rectangle,

representing the position and the size of the viewport relative to the size of

the whole schematic.

The selection of the corners of a viewport can be aborted by pressing the

right mouse button. If you do this during the selection of the first corner,

the zooming function is terminated and you return to menu selection mode.

If you press the right mouse button during the selection of the opposite

corner, the start point is cancelled and you can select a new first point of

the viewport.

Zoom Out

The inverse function Zoom Out can be used to restore the viewport on the

top of the zooming stack. This function has no effect, if the zooming stack

is empty. If you want to restore the original size of the schematic, you can

directly call the function Normal which clears the zooming stack in one step.

152 Chapter 5. Hierarchy Representation

Scaling

With the function +10%, -10%, +50% and -50% from the -Views- submenu

you can change the size of the schematic without moving its upper left corner

to a new position. The scaling factors are 1.1, 0.9, 1.5 and 0.5 respectively.

After calling these functions for several times you can return to the original

size of the schematic with the help of the function Normal.

Miscellaneous

With the function All Objs from the -Views- submenu you get a repre-

sentation of your schematic which will intuitively show the relation to the

underlying mathematical calculus. The graphical represenation resembles

an equation, where the left side is the macro representation of the current

schematic and the right side is the schematic itself. This denotes that the

macro is refined (refinement operator is indicated by an arrow) by the draw-

ing of the schematic. You can return from this representation to the normal

mode, if you call the functions Normal and Home. The call of Normal will

restore the original size of the schematic and Home will move its upper left

corner into the upper left corner of the workarea.

The function Redraw can be used to refresh the drawing of the schematic

within the workarea. This function is useful, if there remains some dirt form

entering and deleting objects as macros, wires or comments. Some functions

automatically do a redraw operation, so that you do not have to call it very

often.

To terminate the hierarchy menu you have to terminate any currently active

function first. In most cases this can be done by pressing the right mouse

button at most twice within the workarea (see also the description of the

appropriate function). After that you are in menu selection mode and you

can close the hierarchy menu by pressing the right mouse button within the

menuline. Now you return to the main menu of the CADIC system. From

there you can select another tool or you can terminate the whole system

call by selecting the entry Exit in the main menu.

Section 5.10 Save the Hierarchy Levels 153

5.10 Save the Hierarchy Levels

In order to save a circuit you should select the entry Save from the submenu

-Circuit-. If the circuit can be saved successfully into the directory given

by DAGDIR the system will display the following message:

Schematic <name> saved.

When a schematic is saved, each hierarchy level is saved into a seperate file

in DAGDIR. For example, if you save the circuit CSA[16], files are created

for CSA[16], CSA[8], SEL[9], CSA[4], SEL[5], SEL[4], SEL[3], CSA[2],

CSA[1], SEL[2] and SEL[1].

Note: You must have write permissions for the directory DAGDIR to save the

circuit hierarchy. If this is not the case, the system tries to save the files to

the default directory /tmp.

154 Chapter 5. Hierarchy Representation

6
Logic Simulation

6.1 Introduction

The simulation tool we describe in this chapter allows the user to check the

functional behaviour of a design. Only the logical function of the basic

cells is taken into account, there are no timing aspects, e.g. delays of the

gates and the wires, represented in the simulation model. This simulation

tool gives you a basic method to check the correctness of your design.

More detailed information about the timing behaviour of your design will

be given by a simulation tool which will be included in the next distribution

of the CADIC system. At this moment you can use one of the conversion

routines to create a standard exchange format (e.g. EDIF 2 0 0 or GHDL),

as they are described in chapter 11 and perform the simulation with a

commercial design system.

6.2 Getting Started

If you use this simulation tool you have to consider some preconditions on

your design. First of all you may only simulate combinational circuits. The

design must not have virtual cycles (c.f. figure 6.1) and the data flow on

a bundle of wires must be unique for all single wires of this bundle (c.f.

figure 6.2).

If the first condition is violated the system is not able to calculate a topol-

156 Chapter 6. Logic Simulation

B

A B

Figure 6.1: Macro A contains virtual cycle

gical sorting of the subcircuits for at least one hierarchy level. Because

the simulation is done by a C program this sorting is needed to create the

correct order of the function calls for the subcircuits as you will see in the

following.

B

A B

2

2

OR

Figure 6.2: Two busses in macro A with non unique data flow

The second condition comes from the objects of the underlying netlist data

structure which does not allow single subnets of a bus to have different

directions. Both restrictions will be erased within a new simulation tool

which is integrated in the new release of CADIC . But nevertheless this

simulation provides a comprehensive method for a first checking of a design.

Section 6.3 Sample Session 157

6.3 Sample Session

In this sample simulation session we will first analyze the fulladder design to

show the basic functions of the simulation tool. Afterwards we will check the

design of the n bit conditional sum adder from chapter 4. The simulation

of a design usually takes the following steps

2 load and prepare the design for simulation

2 start the simulation for a single pattern or a list of patterns

2 examine the simulation results by tracing through the circuit hierarchy

In the following we will explain how to perform these steps with the help of

our special design example, where not all functions of the simulation tool

are needed.

6.3.1 Load and Prepare a Design for Simulation

First we have to load and prepare a circuit for simulation. To do this select

the entry Load from the submenu -Circuit-. After pressing the left mouse

button you will see the list of schematics in your DAGDIR directory. From

this list you should select the entry FullAdder by pressing the left mouse

button onto the highlighted text.

Again you can read the messages during the loading of FullAdder and the

construction of the hierarchical data structure. Finally you can read the

message

Circuit "FullAdder" loaded, Total Data Size: 14698 Bytes

Now FullAdder is loaded and it will be prepared for simulation. The system

will calculate the data flow through the circuit and will generate a C module

for the execution of the circuit operations as it is shown in figure 6.3.

This module will be created in the directory given by the environment vari-

able SIMDIR. In the message area you can see the following information:

cannot open file ../Data/Sim/FullAdder.out

158 Chapter 6. Logic Simulation

Hierarchical Design Hierarchical Simulation Program

HalfAdder

Instances: 2

AND2

Key: 3
Instances: 0

UsedAs: 1

XOR2

Key: 4
Instances: 0

UsedAs: 1

0 1

AND2 XOR2

FullAdder

Key: 0
Instances: 3

UsedAs: 0

OR2

Key: 1
Instances: 0

UsedAs: 1

Key: 2

UsedAs: 2

0 1 2

OR2

HalfAdder

HalfAdder

i1 i2 i3

o1 o2

s1

s3

s2

i1 i2

o1 o2

FullAdder(i1, i2, i3)
{

(s1, s2) = HalfAdder(i1, i2);
(s3, o2) = HalfAdder(s2, i3);
o1 = OR2(s1, s3);

return(o1, o2);
}

HalfAdder(i1, i2)
{

o1 = AND2(i1, i2);
o2 = XOR2(i1, i2);

return (o1, o2);
}

main(argc, argv)
{

...
(v1, v2) = FullAdder(1, 0, 1);
...

}

Figure 6.3: Creation of a hierarchical simulation program

This means that the executable simulation program does not yet exist.

Here ../Data/Sim is the value of the environment variable SIMDIR and

FullAdder.out is the name of the executable simulation program. This

program is created by translating the C module ../Data/Sim/FullAdder.c

and linking subsequently with an object file for the basic cells which is lo-

cated in the CELLDIR directory and is called basiccells.o. For the com-

pilation and the linking of the simulation program CADIC uses the same

compiler as during the installation of the system . If you get a copy of the; 2

executable system, then GNU gcc is the default compiler.

During the creation of the executable simulation program the system will

display the message

Generation of the simulation program:

In the workarea the circuit is not fully shown, until the process of translating

and linking of the simulation program has terminated. If the system displays

the message

Section 6.3 Sample Session 159

--- Finished

the executable file is created and the system is ready for starting the circuit

simulation. At this moment your workarea should look like that shown in

figure 6.4.

Figure 6.4: Circuit FullAdder loaded and prepared for simulation

In figure 6.4 you will see that the system has calculated the data flow

through the circuit. This is indicated by the small arrows at the inputs

and outputs of the two instances of HalfAdder.

6.3.2 Simulation of a Single Pattern

First we want to simulate the circuit for a single input pattern. For this

purpose select the entry Pattern from the -Simulation- submenu. After

activating this function the system asks you for the values at the input pads

of the circuit. Your screen should look like that shown in figure 6.5. First

you have to enter the input value for the most right pad at the northern

160 Chapter 6. Logic Simulation

border of FullAdder which is highlighted by a small square. At the prompt

window you can give a binary input value for this pad. Just type in

Give Input Value for this Pad <1 >

as it is shown in figure 6.5. Note that the binary string must have a length

of 1, because of the width of the corresponding input wire.

Figure 6.5: Setting input value for the right input pad

After pressing the return key, you will see a label beside the input pad,

containing the binary input string. In the same way you have to specify

the values for the middle and the left input pad. Here we enter the values

0 and 1 respectively, i.e. we want to check our fulladder design for the

operation 1 + 0 + 1. The pads are chosen according to the graphical input

of the schematic, i.e. the wire which is connected to the border as first, is

prompted first, etc.

A short time after you have input the last value, you will see the simulation

results at the input and output pins of the macro cells. At each input

Section 6.3 Sample Session 161

there exists a label containing a binary string, representing the values of

the correspondig signals as it is shown in figure 6.6.

Figure 6.6: Simulation results for a single input pattern 1 + 0 + 1

At the output signals of the circuit you see the values 1 and 0, representing

the carry value 1 and the sum value 0, i.e. for the input values 1, 0 and 1

the circuit computes the correct output values.

6.3.3 Tracing through Simulation Results

Now we want to examine the simulation results in detail. This can be done

with the help of the tracing operations, which have already been explained

in chapter 5. First we want to descend in the circuit hierarchy and control

the simulation results at the next level. To do this select the entry Down

from the submenu -Tracing-. Now you are in cell selection mode. Move

the pointer into the workarea near to the upper instance HalfAdder. If it is

highlighted in blue, press the left mouse button and descend into this macro

cell. Now the schematic for HalfAdder is displayed and the simulation

162 Chapter 6. Logic Simulation

results are shown at the input and output pins of the cells on this hierarchy

level (c.f. figure 6.7).

Figure 6.7: Simulation results at the HalfAdder level of the FullAdder

specification

You can control the operation of the basic gates by comparing the input

values to the generated output value. The task of HalfAdder is to compute

the carry and sum of two single bits as we have shown in chapter 4. The

first output value is the carry value, the second output is the sum. In this

case the carry is 0 and the sum value is 1, because we add 1 + 0.

At the lowest level you terminate the trace down operation by pressing

the right mouse button within the workarea. Now we will climb up the

hierarchy to the topmost level in order to explain some other functions of

the simulation tool. To do this move the pointer onto the entry Up in the

submenu -Tracing- and press the left mouse button to reach the highest

hierarchy level FullAdder (the current level name is shown in the upper

right corner of the environment window).

Section 6.4 More Simulation Functions 163

6.4 More Simulation Functions

6.4.1 Load and Prepare for Simulation

In order to explain more functions of the simulation tool we will now examine

the 4 bit conditional sum adder as a small example for a paramterized

circuit. First we have to load and prepare this circuit for simulation. As

shown above you can do this by selection of the entry Load from the submenu

-Circuit-. From the schematic list window you should select the entry

CSADDER[n]. We choose this schematic because it contains the additional

wiring subcircuits which help us to check the simulation results very easily

as it will become clear in the following.

Because this is a parameterized design, you will be prompted to enter the

values for its parameters. After specifying these values the system will be

able to build the hierarchical data structure as it is described in chapter 5.

In our case we choose n = 4, i.e. simply type 4 to the prompt window

Enter Parameter Values for "CSADDER[n]": <4 >

and press the return key. In the message window you will see the hierarchy

levels which are allocated for CSADDER[4].

Now CSADDER[4] is loaded and it will be prepared for simulation. The

system will calculate the data flow through the circuit and will generate a

C module for the execution of the circuit operations (c.f. figure 6.3).

This module will be created in the directory given by the environment vari-

able SIMDIR. In the message area you can see the following information:

cannot open file ../Data/Sim/CSADDER[4].out

This shows that the executable simulation program does not yet exist. Dur-

ing the creation of the executable simulation program the system will display

the message

Generation of the simulation program:

In the workarea the circuit is not fully shown, until the process of translating

164 Chapter 6. Logic Simulation

Figure 6.8: Circuit CSADDER[4] loaded and prepared for simulation

and linking of the simulation program has terminated. If the system displays

the message

--- Finished

the executable file is created and the system is ready for starting the circuit

simulation. At this moment your workarea should look like that shown in

figure 6.8.

In figure 6.8 you will see that the system has calculated the data flow

through the circuit. This is indicated by the small arrows at the inputs

and outputs of the macro cells.

6.4.2 Simulation of a Single Pattern

Again we want to simulate the circuit for a single input pattern first. For this

purpose select the entry Pattern from the -Simulation- submenu. After

activating this function the system asks you for the values at the input pads

Section 6.4 More Simulation Functions 165

of the circuit. Your screen should look like that shown in figure 6.9. First

you have to enter the input value for the left pad at the northern border of

CSADDER[4] which is highlighted by a small square. At the prompt window

you can give a binary input value for this pad. Just type in

Give Input Value for this Pad <11 >

as it is shown in figure 6.9. Note that the binary string must have a length

of 4, because of the width of the corresponding input wire. For this reason

the system will fill up your input with leading zeros.

If you enter more digits than given by the wire width, your input will be

refused and the prompt window will popup again.

Figure 6.9: Setting input value for the left input pad

After pressing the return key, you will see a label beside the input pad,

containing the binary input string. In the same way you have to specify the

value for the right input pad. Here we enter the value 10, i.e. we want to

check our conditional sum adder design for the operation 11 + 10.

166 Chapter 6. Logic Simulation

A short time after you have input the last value, you will see the simulation

results at the input and output pins of the macro cells. At each input

there exists a label containing a binary string, representing the values of

the corresponding signals as it is shown in figure 6.10.

Figure 6.10: Simulation results for a single input pattern 11 + 10

At the output signal of the circuit you see the value 00101, representing the

decimal value 5, i.e. for the input values 11 and 10 the circuit computes

the correct output values. Again you can check the simulation results at

the lower hierarchy levels with the help of the tracing operations. If you

trace through the hierarchy you should return to the highest level before

you continue with the following operations.

6.4.3 Changing the Display Mode

Currently the input and output values are displayed as binary strings, i.e. as

sequences of zeros and ones. The length of each string is given by the width

of the corresponding wire. In some cases (e.g. arithmetic circuits) it is more

Section 6.4 More Simulation Functions 167

convenient to interprete these binary strings and display them according to

a certain base. Here we offer the modes decimal and hexadecimal. Now we

change the display mode to decimal by pressing the left mouse button onto

the entry Dec in the submenu -Values-. The bitstrings are converted to

decimal numbers and you see the input values (3, 2) and the output value

5. Note that now the input and output is done in decimal mode .

We control this by entering a new single pattern for the simulation. Move

the pointer onto the entry Pattern in the submenu -Simulation-. After

pressing the left mouse button you are asked for the input value of the left

input pad (c.f. figure 6.9). Now you can type in a decimal value, e.g. 9.

Note that the binary representation of the decimal value must not exceed

the width of the corresponding wire. In our case of CSADDER[4], where the

input wire have width 4, you may input numbers in the range from 0 to 15.

for the second input pad enter the value 4 and press the return key.

Figure 6.11: Display of simulation results in decimal mode

After the simulation has been finished you see the results at the input and

168 Chapter 6. Logic Simulation

output pins of the macros which are all displayed in decimal mode (c.f.

figure 6.11). The result of the addition is 13 which shows that our adder

works correct for this input example.

The decimal display mode is very intuitive for controlling simulation results

at a high level of the circuit hierarchy. When you descend in the hierarchy

and the wires are more and more split into single binary values, it is more

convenient to use the binary display mode.

6.4.4 Simulation of a List of Patterns

The simulation of a single pattern is useful, if you want to examine the

behaviour of your design for special input values. But in general, you have

to simulate it for a lot of patterns. Then it would be very tiresome to input

all patterns in single pattern mode. The simulation of a list of patterns can

easily be done with the help of the function In File from the -Simulation-

submenu. After activating this mode, a window will be popped up onto the

workarea. This window contains the system call

vi ../Data/Sim/CSADDER[4].pat

i.e. it calls the vi editor with the file CSADDER[4].pat, on which you can

write simulation patterns for the execution by the simulation tool. This file

is also located in the directory given by the environment variable SIMDIR.

At this point of our session the file does not exist and in the bottom line of

the new window you can read the message

"../Data/Sim/CSADDER[4].pat" [New File]

which is the normal message of vi after opening a new file. In the following

we suppose that you are familiar with the work with vi.

Now type in the following text:

DAG CSADDER[4];

PAR 4;

Section 6.4 More Simulation Functions 169

INPUT n[0:3], n[4:7];

OUTPUT s[0:4];

PATTERNS

00000000

00000

00000001

00001

00000010

00010

00010000

00001

00100000

00010

00100010

00100

00110011

00101

01000100

01000

01000101

010001

After you have closed the vi window you can start the simulation of the

pattern list. For this purpose select the entry Start from the submenu

-Simulation-. In the message area you can see, how many patterns have

been simulated successfully. Each pattern is simulated and compared to

the expected output in the pattern list. If there is a difference between the

simulation result and the expected output, the simulation stops and the

current simulation results are displayed at the input and output pins of the

macro cells.

In this case there is a mistake on our pattern file. Therefore the simulation

will stop when pattern 7 is simulated. In the message area the following

170 Chapter 6. Logic Simulation

information is given

Wrong Simulation Values for pattern 7

Simulation Output: 00110011 0 0 00110

Specified Output: 00110011 0 0 00101

The second line shows the simulation results for pattern 7 and the third line

shows the expected results. These are grouped according to the borders of

the circuit, beginning with the northern border, on which the inputs are

located, i.e. input string is 00110011. The next two elements are at the

eastern and western border. These have no input or output pads, and their

default string is 0. The last string is located at the southern border which

is the output of the circuit. Here is the difference between the simulation

result 00110 and the expected result 00101.

Figure 6.12: Simulation results for pattern 7

If you notice a difference between the simualtion result and the expected

result, you can now examine your design with the help of the tracing func-

Section 6.4 More Simulation Functions 171

tions and locate the error. In our case it is not a design error, but we have

a wrong entry in our pattern list. The inputs to our adder are namely

0011 and 0011, i.e. the decimal numbers (3, 3). The result of this addi-

tion should be 6, i.e. 00110 in binary representation. We have to change

the corresponding line on our pattern file which can be done by calling the

function In File from the submenu -Simulation- again.

Change the pattern file in the appropriate way and save it into SIMDIR.

After that you can select the entry Start from the submenu -Simulation-

again. Finally you will see the messages

Simulation successful

in the message area. This means that all patterns have been sucessfully

simulated and the simulation loop has reached the end of the pattern file.

If you want to check the patterns step by step you can first reset the simu-

lation by selecting the entry Back from the submenu -Simulation-. With

the help of this function you can return to a previously created wrong sim-

ulation result. In our case there is no such input pattern anymore and you

return to the beginning of the pattern list. In the message area you can

read the information

No previous error found.

Now you can step through the patterns in your list. For each pattern the

simulation results are shown at the input and output pins of the macro cells.

With the help of the tracing functions you can examine the design for each

simulation pattern. If there is no difference between the simulation result

and the expected result of the current pattern, you will see the message

Simulation sucessful

in the message area. If you repeat this function and reach the end of the

pattern list, the system will display the message

Simulation terminated

and the labels at the input and output pins will turn empty. Any further

172 Chapter 6. Logic Simulation

activation of Next will result in the messages

Simulation terminated

as we have shown it above. This tells you that the end of the pattern list

is reached. You can now step backwards with the help of the following

function or restart the simulation by selecting the entry Start.

In the same way as you can step forward through the list of patterns you

can go backwards to previous patterns. This can be done by selecting the

entry Prev form the submenu -Simulation-.

7
Layer Assignment

7.1 Introduction

During the specification of a circuit we have neglected the layers, in which

the wires are embedded, in order to support a comfortable description

method. It is the task of a design tool to assign the signal nets to the

given wiring layers (layer assignment problem). Wiring segments which are

intersecting and which do not belong to the same signal net, must be em-

bedded in two different layers. Parts of a signal net which are on different

layers, must be connected by vias. Figure 7.1 shows a subcircuit which is

embedded in two layers. In this case we need two vias to get a legal layer

assignment.

XOR2AND2AND2 XOR2

Figure 7.1: Circuit with layer assignment in two layers

174 Chapter 7. Layer Assignment

An important aspect of algorithms for automatic generation of a layer as-

signment lies in the minimization of the number of vias. The reason for this

is that vias delay the signals and they cause errors during the production

process of the chip.

This optimization problem is called constrained via minimization problem

(CVM), where we use n different layers in the general case (CVMn). But

industrial chip fabrication uses only two layers for the logical wiring of the

chip and one additional metal layer for the supply nets. During the assign-

ment of the signal nets to the layers, there may be some constraints which

have to be taken into account. For example if you have layers with different

conductivity, you should use the layer with higher conductivity for most

parts of the signal nets (layer assignment problem with layer preference).

Another constraint can be given by the basic cells, if you may only connect

a pin in a certain layer (layer assignment problem with pin preassignment).

A summary about the theory of layer assignment problems which in general

are very difficult to solve, can be found in [Mol87],[CNR87].

7.2 The Algorithm integrated in CADIC

In the following we restrict to an algorithm which solves the problem CVM2,

where vias may only be set on wiring segments and not on branches or

knees. In [KCS88] it is shown that there exists a polynomial algorithm for

this restricted problem.

The computation of the layer assignment is done by a hierarchically working

algorithm on the DAG structure of the circuit, i.e. each treenode in the

hierarchy is treated only once. The algorithm works bottom up, i.e. the

layers for a treenode are calculated, if they exist for all its instances. For

the basic cells, the layers, in which the pins may be connected, are stored

in the basic library. For each hierarchy level we have to solve the layer

assignment problem with pin preassignment, because from the lower level

the layers at the borders of the instances are implied. An optimal solution

for this problem in polynomial time is unknown until now ([KMO89]).

Section 7.2 The Algorithm integrated in CADIC 175

In a simple approach the algorithm could be run without regarding the

given preassignment of the pins. Afterwards we could adjust the layers at

the instance borders by creating appropriate vias. It is obvious that this

method would lead to too many vias. Therefore we hold for each Cgraph

two different layer assignments which are “dual” to each other. The second

version of the Cgraph is given by exchanging the layer for all signal nets,

i.e. a net in the red layer in the normal version is in the green layer in

the dual version and vice versa. From these two possibilities we choose

this one, where fewest vias are needed to adjust the instance border to the

surrounding Cgraph.

The integrated tool in CADIC ([Gra92]) is based on the algorithm described

in [Mol93]. This algorithm works on a Cgraph as input, for which it calcu-

lates the dual graph first. The faces of the Cgraph which are represented

by the nodes of the dual graph, are marked as “odd” or “even”. This clas-

sification follows directly from a classification for the nodes at the border of

each face. The edges of the dual graph represent the neighbourhood of two

faces in the Cgraph, i.e. these faces have a common border. In [Mol93] it is

shown that there is a legal layer assignment for the Cgraph, if for each pair

of odd faces there exists a path within the dual graph. The edges on this

path directly imply the locations of the vias. It is also shown in [Mol93]

that such a “marriage” of the odd faces is always possible, because there

is always an even number of odd faces in a given Cgraph. The problem of

minimizing the number of vias for a legal layer assignment is now equivalent

to finding shortest paths for the connection of two odd faces.

3

3 3

3

Figure 7.2: Layer assignment for multi wire nodes

176 Chapter 7. Layer Assignment

For a legal layer assignment we still have to consider the width of wires,

because the branching or crossing of wires with a width larger than one

implies more vias as figure 7.2 illustrates. The vias are needed, because

the refinement of the multi wire node contains odd faces (marked by •). In

order to reduce the number of vias we allow the use of multi layer busses,

i.e. not all wires have to be in the same layer. In the same way a bus via

represents a set of vias on the single wires of the bus.

7.3 Layer Assignment for the Halfadder

In order to invoke the layer assignment tool you first should select the entry

Layer Assignment from the submenu -Synthesis- within the main menu.

To show you how the system will display the information from the layer

assignment algorithm we will first apply it to the simple design of the hal-

fadder.

Load Circuit Hierarchy

First you have to load the DAG structure of the circuit HalfAdder. This

can be done by selecting the entry Load from the submenu -Circuit-

which calls the same function as the load button from the hierarchy menu

(c.f. chapter 5). If you still have loaded the circuit HalfAdder you need not

select this menu point.

Assign the Layers

To compute the layer assignment for HalfAdder you should activate the en-

try Assign from the submenu -Layers-. In the message window of CADIC

you can read the following messages:

building dualgraph HalfAdder

number of odd faces 2

odd face marriage in dualgraph HalfAdder

inserting layer information HalfAdder

number of created via’s: 2

Section 7.3 Layer Assignment for the Halfadder 177

Figure 7.3: Layer assignment for HalfAdder

The first message shows that the system builds the dual graph from the

Cgraph of HalfAdder and that it contains 2 odd faces. In the next step

these faces are “married”, i.e. the shortest path from one face to the other

is calculated in the dual graph. This path implies the creation of two vias,

i.e. the path consists of two edges in the dual graph.

After the last message is displayed the graphical representation of

HalfAdder is changed in the workarea (c.f. figure 7.3). The wires which

have been coloured yellow, are now drawn in red and green. These two

colours represent the two different wiring layers, whereas yellow denotes the

unspecified layer.

In the upper left corner of the workarea you can read a label Total Number

Vias: 000002 which indicates that for the whole circuit there have been

created two vias. In this example of one single hierarchy level this number

is equivalent to the vias on this level.

The vias are denoted by small squares on the wires in the Cgraph. At

178 Chapter 7. Layer Assignment

these positions the layer for the signal net changes from red to green. The

algorithm puts the vias always in the middle of the corresponding Cgraph

edge.

If you look at figure 7.3 you might ask yourself, why are the vias needed.

We could layout the wire at the second input I2 of the AND2 gate in the

green layer and the wire connected to the left input I1 of the XOR2 gate in

the red layer. The reason for the vias is that the algorithm solves the layer

assignment problem with pin preassignment. In our case the pins of the

basic cells are preassigned within the basic cell library, such that all pins

are either in the red layer or in the green layer.

7.4 Colouring the Fulladder

Now we apply the layer assignment algorithm to a small hierarchical circuit

description.

Load Circuit Hierarchy

In the same way as above you should load the DAG structure for FullAdder

by selecting the appropriate entry from the list window.

Assign the Layers

After the DAG structure has been built we can now compute the layer

assignment for FullAdder. As shown above you can do this by activating

the entry Assign from the submenu -Layers-. In the message window the

system will now display the following informations:

building dualgraph HalfAdder

number of odd faces 2

odd face marriage in dualgraph HalfAdder

inserting layer information HalfAdder

building dualgraph FullAdder

number of odd faces 2

odd face marriage in dualgraph FullAdder

Section 7.4 Colouring the Fulladder 179

inserting layer information FullAdder

number of created via’s: 5

In this case of a hierarchical circuit the system has to build the dual graphs

for all treenodes, i.e. for HalfAdder and FullAdder. As mentioned above

the algorithm works bottom–up, such that HalfAdder is treated first and

the layer assignment for it is used to compute the layer assignment for the

Cgraph of FullAdder. Both Cgraphs have two odd faces, which have to

be “married”. As we know from the previous section the algorithm needs

two vias for a legal layer assignment of HalfAdder. One additional via is

needed within the Cgraph of FullAdder, such that we have a total number

of 5 vias within the whole hierarchy of the circuit.

Figure 7.4: Layer assignment for FullAdder

In figure 7.4 the root level of the hierarchy for FullAdder is shown. If you

look at the two instances HalfAdder, you can see that for the left instance

the sequence of layers at the northern and southern border is (red, green).

For the right HalfAdder the sequence is (green, red), i.e. for the second

180 Chapter 7. Layer Assignment

instance we use the dual layer assignment, where the red and green layers

are exchanged. This helps the algorithm to minimize the number of vias.

If it had to use the same layer assignment for both instances, then it must

create a via on the wire connecting the right output of the left HalfAdder

with the first input of the right HalfAdder.

In each instance which represents a subcircuit, you can read the number

of vias created in the corresponding DAG structure. Here both instances

of HalfAdder contain two vias from the layer assignment of the previous

section. The annotation (D) behind the number of vias in the label of the

right HalfAdder indicates that for this instance the algorithm has chosen

the dual layer assignment.

Tracing through the Results

We can control the layering of the HalfAdder with the help of the tracing

functions from chapter 5. First select the entry Down from the submenu

-Tracing- in order to descend into one halfadder. Move the pointer into

the workarea near to the left instance and select it with the left mouse

button. Now the system descends one level in the hierarchy and displays

the Cgraph for the HalfAdder. Because the instance is in normal mode, you

see the same layer assignment as we have created it in the previous section

(c.f. figure 7.3).

In the next step we want to look at the second HalfAdder. To do this, you

must terminate the cell selection mode by pressing the right mouse button

within the workarea. After that we trace up one level back to the FullAdder

by selecting the entry Up from the submenu -Tracing-. Now you can step

down into the second HalfAdder with the trace down operation. Compared

to the first HalfAdder you will see that the layer assignment is inverted.

Section 7.5 Multi Layer Wires: the 16 Bit Conditional Sum Adder 181

7.5 Multi Layer Wires: the 16 Bit Conditional Sum

Adder

For the layer assignment algorithm the example of the 2n bit comparison

tree Tree[n] is an “uninteresting” circuit, because there are no crossings

of wires in the tree structure. All wires can be layed out in the same layer,

such that there are no vias needed.

We will now examine the results for the 16 bit conditional sum adder and

especially show how bundles of wires may be assigned to the different layers.

Load Circuit Hierarchy

Load the 16 bit adder from our parameterized specification of the n bit

conditional sum adder. As you already know from chapter 5 you have to

activate the entry Load from the submenu -Circuit- and select the element

CSA[n] from the list window. At the following prompt

Enter Parameter Values for "CSA[n]":< >

type in CSA[16] or simply 16 to set the value of n=16. After confirming

this entry with the return key the system will load the DAG structure for

the 16 bit adder.

Assign the Layers

Now you can call the layer assignment algorithm for CSA[16] by activating

the entry Assign from the submenu -Layers-. Following the hierarchical

DAG structure, the algorithm displays a list of messages:

building dualgraph CSA[1]

number of odd faces 4

odd face marriage in dualgraph CSA[1]

inserting layer information CSA[1]

building dualgraph SEL[1]

number of odd faces 6

odd face marriage in dualgraph SEL[1]

182 Chapter 7. Layer Assignment

inserting layer information SEL[1]

...

building dualgraph CSA[16]

number of odd faces 0

odd face marriage in dualgraph CSA[16]

inserting layer information CSA[16]

number of created via’s: 402

Figure 7.5: Layer assignment for the 16 bit conditional sum adder

Figure 7.5 shows the result of the layer assignment algorithm for the topmost

hierarchy level of CSA[16]. The label in the upleft corner of the workarea

tells you that there have been inserted 402 via nodes in all Cgraphs of the

hierarchy. The informations in the instances show, how these vias are split

across the lower levels. Each CSA[8] contains 162 vias and the selection

subcircuit SEL[9] needs 62 vias. If you sum up these numbers, you get

2×162+62 = 386. This means that the remaining 16 vias are on the topmost

hierachy level. But in figure 7.5 you will only find two via nodes which are

placed on the wire connecting the southern border of the left CSA[8] and

Section 7.5 Multi Layer Wires: the 16 Bit Conditional Sum Adder 183

the northern border of SEL[9] and the wire between the southern border

of SEL[9] and the southern border of the hierarchy level. These two via

nodes represent not only one single via, because they are put onto a bundle

of wires. As you can see in figure 7.6 each via node corresponds to 8 single

vias on this bus wire.

The presence of a multi via node can be recognized by the change of the

colours for a bus wire. In the example from figure 7.5 the colour of the bus

between CSA[8] and SEL[9] changes from red to grey. This means that

the bus is first completely layed out in the red layer and below the multi

via node some single wires of the bus are in the green layer. The bus is

then drawn in grey to denote that it is a multi layer wire. In the same way

the bus wire at the southern border of SEL[9] is a multi layer wire. The

remaining bus wires are all layed out in one layer, such as the two wires at

the northern border of the CSA[8] instances are totally in the green layer.

You might wonder, why the bus via between the southern border of SEL[9]

and the schematic border is needed. The multi layer wire could be di-

rectly connected to the border without changing the layers again. But one

property of the underlying algorithm is that a bus wire must be uniformly

connected to the schematic border in order to simplify the reuse of each

Cgraph as an instance in another hierarchy level. If a multi layer wire has

to be connected to the Cgraph border it is unified, such that the minimal

number of vias is inserted. In our example the wire is totally layed out in

the red layer, because the algorithm needs only 8 vias instead of 10 vias for

a uniform wire in the green layer.

Refining Multi Layer Wires

If you want a detailed display of a multi layer wire node, you can select the

entry Refine from the submenu -Layers-. After activating this function

you are in wire selection mode. Move the pointer into the workarea near

to the bus wire you want to examine. If the desired wire is highlighted (its

colour changes to cyan) you can select it by pressing the left mouse button.

184 Chapter 7. Layer Assignment

After that a small window is popped up upon the bus, in which you see the

colours of all single wires. In figure 7.6 we have selected the multi layer wire

at the southern border of the instance SEL[9] and refined it.

Figure 7.6: Refinement operation for multi layer wires

From the refinement you can also find out, where the vias of a bus via are

placed. In figure 7.6 the vias are placed on the last 8 wires of the 18 bit

wide bus, because in the bus refinement the last 8 wires are layed out in the

green layer and after the bus via the whole wire is in the red layer.

After the popup window is opened in the workarea you remain in wire

selection mode in order to refine another bus. For example move the pointer

near to the other grey wire between CSA[8] and SEL[9]. If it is highlighted

in cyan, press the left mouse button to select this one. Then the previous

popup window disappears and a new window is creted at the position of

the new selection. You can terminate the wire selection mode by pressing

the right mouse button within the workarea. The current popup window is

closed and you return to the menu selection mode.

Section 7.5 Multi Layer Wires: the 16 Bit Conditional Sum Adder 185

Figure 7.7: Navigation to the lowest hierarchy level CSA[1]

Navigation through the Results

Before we close the layer assignment session we want to take a look at the

lower hierarchy levels of CSA[16]. Select the entry Down from the submenu

-Tracing- in order to descend into the instances. Move the pointer near

to the left CSA[8] and trace down this path until you arrive at the lowest

hierarchy level CSA[1]. The layer assignment for the corresponding Cgraph

is shown in figure 7.7.

The label in the upleft corner of CSA[1] tells you that there are three vias

inserted and that the currently selected instance is in dual mode (D). This

is respected in the colouring of the wires, where the green and red layers

are exchanged. You can notice this by first tracing up one level and then

stepping down into the second CSA[1] which is in normal mode.

186 Chapter 7. Layer Assignment

Removing the Layer Assignment

If you want to apply other design tools, where you do not use the layer

assignment, you can remove the via nodes and the layer information from

the Cgraphs. You also can load the circuit again from DAGDIR. To remove the

layer assignment select the entry Remove from the submenu -Layers-. After

activating this function the system will display the following informations

in the message window:

2 Vias (Nodes/Edges) removed in Treenode CSA[16]

2 Vias (Nodes/Edges) removed in Treenode CSA[8]

3 Vias (Nodes/Edges) removed in Treenode CSA[4]

3 Vias (Nodes/Edges) removed in Treenode CSA[2]

3 Vias (Nodes/Edges) removed in Treenode CSA[1]

0 Vias (Nodes/Edges) removed in Treenode OR2

0 Vias (Nodes/Edges) removed in Treenode AND2

0 Vias (Nodes/Edges) removed in Treenode INV

0 Vias (Nodes/Edges) removed in Treenode XOR2

2 Vias (Nodes/Edges) removed in Treenode SEL[2]

3 Vias (Nodes/Edges) removed in Treenode SEL[1]

0 Vias (Nodes/Edges) removed in Treenode MUX

3 Vias (Nodes/Edges) removed in Treenode SEL[3]

3 Vias (Nodes/Edges) removed in Treenode SEL[5]

2 Vias (Nodes/Edges) removed in Treenode SEL[9]

4 Vias (Nodes/Edges) removed in Treenode SEL[4]

Total Number of removed Vias: 30

The number of removed vias concerns the via nodes, i.e. a bus via is regarded

as one single node in this listing. For example at the hierarchy level CSA[16]

there are only 2 vias removed which are exactly the two bus vias from above.

Each of these two nodes represents 8 single vias as we have shown in the

previous paragraph.

Note that the layer assignment is removed from the currently displayed

hierarchy level down to the leaves of the DAG structure. If you want to

Section 7.5 Multi Layer Wires: the 16 Bit Conditional Sum Adder 187

remove it for the whole DAG structure, then you have to trace up first,

until you reach the root of the hierarchy.

Changing the View

With the help of the functions from the submenu -Views- you can change

the graphical representation of the schematic. The functions in the menu

of the layer assignment tool are identically to those in the hierarchy menu.

For an explanation you can look at section 5.9.

To terminate the layer assignment menu you have to terminate any currently

active function first. In most cases this can be done by pressing the right

mouse button at most twice within the workarea (see also the description

of the appropriate function). After that you are in menu selection mode

and you can close the layer assignment menu by pressing the right mouse

button within the menuline. Now you return to the main menu of the CADIC

system. From there you can select another tool or you can terminate the

whole system call by selecting the entry Exit in the main menu.

Normally the layer assignment and the power supply tools are called before

you create the final layout of the circuit. When you have created the layer

assignment for a circuit you can change to the menu for generating its layout

by going to the main menu of CADIC and then to the layout submenu

(c.f. chapter 9).

188 Chapter 7. Layer Assignment

8
Power Supply

8.1 Introduction

During the specification of a circuit the designer does not enter the power

supply nets. These can be generated automatically by an appropriate tool

([Sch92]) which has to perform the following two tasks:

2 calculation of the topology and

2 sizing of the wiring segments

The calculation of the topology is only possible, if all basic cells in the design

have pins for the connection of the power supply nets. In our designs from

the editor session, where we used the CADIC basic cell library, these pins

are denoted by small blue squares at the cell borders, they are labelled with

the names VDD and VSS.

In today’s fabrication process both supply nets will be layed out in the

same metal layer. This implies that the nets must be free of any crossings.

The algorithm in CADIC achieves such a layout by a tree like structure for

both nets which can be derived directly from the topology of the graphical

specification.

Beside the calculation of the topology of the supply nets, the wiring seg-

ments of these nets have to be sized according to power consumption as-

pects. The sizing has to guarantee that the power drop from the pads at the

border of the whole chip to the inner pins at the basic cells is smaller that a

190 Chapter 8. Power Supply

given bound. At the same time the wire segments should not be oversized

because of the limited chip area. Above this there is a minimum wire width

which has to be respected. This means, that we have to regard different

optimization goals which are influencing each other. If we choose a certain

layout for the wires this implies their width and the power consumption. A

certain wire width has a backdraw to the wire layout because of geometrical

rules.

8.2 The Algorithm integrated in CADIC

The tool which is integrated in CADIC , generates the power supply nets in

two independent steps. First it calculates the topology of the nets according

to the graphical specification. In a second step the sizing for the nets is

calculated such, that the power consumption and the chip area for the wires

are balanced within the given topology.

8.2.1 Calculation of the Topology

As almost all integrated algorithms in CADIC the calculation of the topology

for the power supply nets is done in a hierarchical manner. The algorithm

constructs the nets in a bottom–up process following the DAG structure of

the given circuit. This means, that for each treenode the power supply nets

are created once. The location of the pads for these nets on the correspond-

ing schematic borders are used on the next higher hierarchy level as the new

starting points. For the macro cells on each hierarchy level the algorithm

creates new pins for the connection of the power supply nets.

The underlying algorithm ([Kol86]) is based on the representation of each

treenode by a bicategorial expression as we have introduced it in section 4.2.

Before the topology is created, for each treenode a data structure for the

bicategorial expression is generated by a slicing algorithm. This algorithm

uses the graphical specification to split it according to the operations e
and e . This algorithm is stored in an appropriate function library, which

can be used for other tools using the bicategorial representation. Another

Section 8.2 The Algorithm integrated in CADIC 191

example for such a tool is the place&route algorithm which will be explained

in chapter 9.

HalfAdder

Instances: 2

AND2

Key: 3
Instances: 0

UsedAs: 1

XOR2

Key: 4
Instances: 0

UsedAs: 1

0 1

AND2 XOR2

FullAdder

Key: 0
Instances: 3

UsedAs: 0

OR2

Key: 1
Instances: 0

UsedAs: 1

Key: 2

UsedAs: 2

0 1 2

OR2

HalfAdder

HalfAdder

OR2HA HA

AND2 XOR2

Slicing

Slicing

Figure 8.1: Generation of a slicing tree for each treenode in a hierarchical

description

In figure 8.1 it is shown, how the representation in form of a bicategorial

expression is created for each treenode in the hierarchy. By applying the

slicing algorithm for each treenode a pointer to the data structure for the

bicategorial expression is set. Each expression is represented by a tree like

structure, where the leaves of the tree are built of nodes, edges and instances

in the corresponding Cgraph. The inner nodes of the data structure, which is

called the syntax tree, are operational nodes representing the concatenations

of the corresponding subtrees.

On each hierarchy level the integrated algorithm works bottom–up in the

syntax tree, where the operations at the inner nodes imply the local topology

of the supply nets ([Kol86]). To create an easy to handle result, we assume

that each treenode and each instance has exactly one VDD and one VSS

192 Chapter 8. Power Supply

pad. The VDD (VSS) pins and pads are always located at the northern or

the eastern (the southern and the western) border. This implies a simple

method to create the two power nets without crossings.

8.2.2 Sizing of the Power Supply Nets

After the topology of the power supply nets is generated each wire segment

of these nets is sized according to the power consumption of the connected

elements. The sizing algorithm is also working hierarchically on the un-

derlying DAG structure. It is based on heuristics which are explained in

detail in [Kol86]. The calculated sizing results are stored as attributes to

the created wiring edges in the corresponding Cgraphs, such that they can

easily be displayed in the graphical specification.

8.3 Power Nets for the Fulladder

Load Circuit

Before we can construct the power supply nets for a circuit, you must load

this circuit first. After pressing the push button Load in the submenu

-Circuit-, a list window pops up onto the work area which contains the

list of all existing circuits. Move the cursor near to the entry FullAdder

and select by pressing the left mouse button.

Create the Topology of the Power Nets

After you have loaded the hierarchy for FullAdder you can create the topol-

ogy for the power supply nets. You activate the algorithm by selecting the

entry Create from the submenu -Power-Tree-. Then you can read the

following informations in the message window:

Generate the Power-Tree for HalfAdder

Generating/Reading Slicing(HalfAdder)

Routing power wire(HalfAdder)

Building Power-treenode(HalfAdder)

Section 8.3 Power Nets for the Fulladder 193

Generate the Power-Tree for FullAdder

Generating/Reading Slicing(FullAdder)

Routing power wire(FullAdder)

Building Power-treenode(FullAdder)

These messages illustrate the bottom–up working method of the algorithm.

First the power supply nets for the subcircuit HalfAdder are generated. For

this purpose the algorithm creates or simply reads the slicing of HalfAdder

as the second message line implies. If the graphical representation of

HalfAdder has not changed since the last call of the slicing procedure, it

can read the old information instead of calculating it from the scratch.

With the help of the slicing information the power supply nets are routed

through the Cgraph of the corresponding hierarchy level (illustrated by the

message Routing power wire(HalfAdder)). In the final step for this hier-

archy level the power nets are connected to the border of the schematic and

the pads for the external connections to these nets are created.

Now that the power supply nets for HalfAdder exist, the nets for the

next higher level FullAdder can be generated. Again the slicing for this

level is created or read form the directory given by the environment vari-

able SLICEDIR and then the power nets are routed through the Cgraph

of FullAdder. The resulting topology of the supply nets can be seen in

figure 8.2.

Note that the instances for HalfAdder have two new pins which are la-

belled VDD and VSS. These pins correspond to the pads created at the lower

hierarchy level, where the supply nets are connected to the border of the

schematic. As mentioned above the bottom–up working method of the al-

gorithm implies that for all subcircuits at the current hierarchy level, the

power supply nets must have been created, such that the power pins at all

instances exist.

For the basic cells at the lowest hierarchy level the supply pins are given

by the information from the cell library. An important condition is that

the pins for VDD are always at the northern or the eastern border and the

194 Chapter 8. Power Supply

Figure 8.2: Topology of the power supply nets for the FullAdder level

pins for VSS are at the southern or the western border. For the macro cells

this is automatically performed by the power supply algorithm, but for the

basic cells this must be regarded during the design of a new cell library.

Sizing of the Supply Nets

After the topology for the supply nets has been created, the wire segments

of these nets can be sized according to the power consumption rules. For

this purpose CADIC offers three different heuristics which work on the hi-

erarchical representation of the circuit. In our session we will use the linear

sizing heuristic which can be activated by selecting the entry Linear from

the submenu -Sizing-.

The results of the sizing heuristic are displayed by small labels at each

wire segment of the power supply nets (c.f. figure 8.3). The width of each

segment is given in µm, where the minimum width of a wire in CADIC ’s

layout system is 2µm.

Section 8.4 Power Supply for the Conditional Sum Adder 195

Figure 8.3: Sizing of the wire segments of the power supply nets for the

FullAdder

In our small example of the fulladder, the sizing heuristic sets all wire widths

to the same value of 2µm. Again you can inspect the results of the algorithm

at the lower hierarchy level with the help of the tracing functions.

8.4 Power Supply for the Conditional Sum Adder

Load Circuit

Before we can create the power supply nets for the conditional sum adder, we

have to load an element of the parameterized description. Select the entry

Load from the submenu -Circuit- and choose CSA[n] from the schematic

list window. For the parameter value n type in 16 at the corresponding

input window.

196 Chapter 8. Power Supply

Create the Topology of the Supply Nets

If you activate the entry Create in the -Power-Tree- submenu the topology

for the supply nets on each hierarchy level of CSA[16] is created. In the

message window the algorithm displays the informations for each treenode:

Generate the Power-Tree for CSA[1]

Generating/Reading Slicing(CSA[1])

Routing power wire(CSA[1])

Building Power-treenode(CSA[1])

Generate the Power-Tree for SEL[1]

Generating/Reading Slicing(SEL[1])

Routing power wire(SEL[1])

Building Power-treenode(SEL[1])

...

Generate the Power-Tree for SEL[9]

Generating/Reading Slicing(SEL[9])

Routing power wire(SEL[9])

Building Power-treenode(SEL[9])

Generate the Power-Tree for CSA[16]

Generating/Reading Slicing(CSA[16])

Routing power wire(CSA[16])

Building Power-treenode(CSA[16])

Sizing for the Power Nets

Now we call the sizing heuristic for the power supply nets of the 16 bit

conditional sum adder. Again we will use the linear sizing algorithm which

can be activated by the entry Linear form the submenu -Sizing-. After

the algorithm has finished you can see the results within the small labels at

each segment of the supply nets as it is illustrated in figure 8.4.

In this example the sizing algorithm has to enlarge the wire segments near

to the border of the whole circuit. For example the VDD net has the width

22µm at the eastern border of the schematic. The label at the corresponding

Section 8.4 Power Supply for the Conditional Sum Adder 197

Figure 8.4: Power supply nets for CSA[16] with linear sizing of the wire

segments

wire segment is not shown, because the length of the segment is too small.

Nevertheless you can look at it with the help of the zooming function Zoom

In from the submenu -Views-. After the branching node this wire segment

is split into two segments of the width 12µm and 10µm, respectively.

The VSS net which starts at the western border of the schematic has the

size 27µm. Again you must zoom in to see the label at this short segment.

After the branch, it is divided into two segments of width 23µm and 4µm,

the first of which is split again into two segments of width 12µm and then

connected to the two instances CSA[8].

With the help of the tracing function Down from the submenu -Tracing-

you can follow this wire into the instances CSA[8]. Select the left 8 bit

conditional sum adder and trace down into it. At this level you can con-

trol the connection of the power supply nets to the next subcircuits in the

hierarchical description.

198 Chapter 8. Power Supply

Now trace down until you reach the lowest level. For this purpose we se-

lect the left instance, the conditional sum adder for the upper half of the

operands, at each hierarchy level until we reach the level CSA[1] as it is

shown in figure 8.5.

Figure 8.5: Power supply nets for the 16 bit conditional sum adder at the

lowest hierarchy level CSA[1]

At this level which only contains basic cells, all wire segments are sized to

the minimum wire width of 2µm. The width of the wires at higher levels are

implied by these basic circuits, because of the bottom–up working method

of the sizing algorithm.

Changing the View

With the help of the functions from the submenu -Views- you can change

the graphical representation of the schematic. The functions in the menu

of the power supply tool are identically to those in the hierarchy menu. For

an explanation you can look at section 5.9.

Section 8.4 Power Supply for the Conditional Sum Adder 199

To terminate the power supply menu you have to terminate any currently

active function first. In most cases this can be done by pressing the right

mouse button at most twice within the workarea (see also the description of

the appropriate function). After that you are in menu selection mode and

you can close the power supply menu by pressing the right mouse button

within the menuline. Now you return to the main menu of the CADIC

system. From there you can select another tool or you can terminate the

whole system call by selecting the entry Exit in the main menu.

Normally the layer assignment and the power supply tools are called before

you create the final layout of the circuit. When you have created the power

supply nets for a circuit you can change to the menu for generating its

layout by going to the main menu of CADIC and then to the layout submenu

(c.f. chapter 9).

200 Chapter 8. Power Supply

9
Geometrical Layout Design

9.1 Introduction

At the moment, the circuit layout in CADIC is only a topological design

which is at the gate level and thereby independent of concrete technologies.

In the fact, this layout design handles the problem of finding a “good”

topographical representative of a logic topological net. The construction of

the layout bases on the circuit representation by bicategorial expressions as

it is shown in chapter 8. Here we also use the function library for the slicing

of the Cgraphs in order to build the data structure shown in figure 8.1.

If this structure has been calculated earlier and the Cgraphs have been

changed by another synthesis tool as for example the power supply or the

layer assignment tool, the slicing is newly created. The the generation of

the layout is performed in the following two steps:

2 placement ([Fet95]) and

2 routing ([Wan95])

These two phases are decoupled, because during the placement the circuit is

deformed step by step. This implies a manipulation of the geometrical data

which would be an expensive operation, if it is performed on the final layout

data. Instead the placement phase is a calculation phase, after which the

positions of all objects in the circuit are known, such that the final layout

can be generated by processing of these informations.

202 Chapter 9. Geometrical Layout Design

Not alike other design system for VLSI, CADIC ’s layout system works

hierarchically. The layout design in CADIC is also based on its DAG data

structure. On the data structure, where the bicategorial expression for each

treenode has been generated (c.f. figure 8.1), the system will now process

each syntax tree in a bottom–up manner. The elements at the leaves of a

syntax tree are basic components at the corresponding hierarchy level. The

inner nodes of each tree which contain one of the operations e or e imply

a local construction step for the two subtrees of this node. Mainly this

construction step consists of a river routing algorithm which has to connect

the borders of the two objects. The resulting wiring can be optimized

according to the following aspects:

2 minimization of the channel height

2 minimization of the channel width

2 minimization of the area for the new object which is created by the

two subobjects and the channel between them

These optimization goals are respected during the placement phase, the

result of which is a placed syntax tree. In this placed syntax tree all channel

heights and sizes for the subcircuits are calculated.

Beside the representation as syntax trees, the layout design system in CADIC

uses a data structure for the geometrical layout. This data structure which

is called BTG–Net (basic topographical net), is created for each treenode

in the hierarchy (c.f. figure 9.1). Again the hierarchical structure of the

circuit is used, i.e. for each treenode there exists only one BTG–Net. For

each instance of this treenode the corresponding BTG–Net is inserted.

9.2 The Layout for the Fulladder

In order to create the layout for a circuit select the entry Place&Route

from the submenu -Synthesis- in the main menu. After you press the

push button Place&Route, a new submenu named Layout is displayed in

the menuline. You are now in the mode of function selection.

Section 9.2 The Layout for the Fulladder 203

HalfAdder

Instances: 2

AND2

Key: 3
Instances: 0

UsedAs: 1

XOR2

Key: 4
Instances: 0

UsedAs: 1

0 1

AND2 XOR2

FullAdder

Key: 0
Instances: 3

UsedAs: 0

OR2

Key: 1
Instances: 0

UsedAs: 1

Key: 2

UsedAs: 2

0 1 2

OR2

HalfAdder

HalfAdder

OR2HA HA

AND2 XOR2

Slicing

Slicing

OR2

HalfAdder

HalfAdder

or and

Place&Route

Place&Route

Figure 9.1: Generation of BTG–Nets for each treenode in a hierarchical

description

Load Circuit

Before you can create the layout of a circuit you have to load it first. But you

can use the DAG structure if you already loaded the circuit within another

tool of the system, as for example the layer assignment tool. Especially

you must not load it newly, if you want to use the results of a previous

tool. In our case we will load again the hierarchy for FullAdder and create

the layout without the results of the other tools. Select the push button

Load from submenu -Circuit- and choose the entry FullAdder in the list

window.

Hierarchical Placement

The function hierarchic from the submenu -Placement- will create a hi-

erarchical geometrical layout. After you have loaded the circuit FullAdder,

press the push button hierarchic within the submenu -Placement-. After

204 Chapter 9. Geometrical Layout Design

that the layout procedure starts up and you can read the following infor-

mations in the message window:

EMBED < FullAdder >

Slicing:

Generate Slicing for HalfAdder

Generate Slicing for FullAdder

Place the Slicing-Tree for FullAdder

(FullAdder(HalfAdder))

Layout-Generation:

Generate the Layout for HalfAdder

Generate the Layout for FullAdder

Data Space for BTG of FullAdder: 7940 Bytes

Data Space for BTG of HalfAdder: 5120 Bytes

Data Space for BTG of AND2: 1276 Bytes

Data Space for BTG of XOR2: 1276 Bytes

Data Space for BTG of OR2: 1276 Bytes

Total Data Space for BTG: 16888 Bytes

+-----------------------------AREA-PROTOCOL-----------------------------+

Lay 0: 1605.36 um^2 Lay 1: 0.00 um^2 Lay 2: 0.00 um^2 PLay: 0.00 um^2

+---+

Total used area: 33605.36 um^2 Circuit Area: 58864.83 um^2 TA/CA:57.09%

+---+

These messages illustrate the working of the place&route algorithm. First

the slicing of the Cgraphs is generated in the same way as we have explained

it in chapter 8. Then the slicing information is used for the placement phase,

indicated by the message Place the Slicing-Tree for FullAdder. The

placement is done in a bottom–up manner. This is indicated by the fol-

lowing line, where the expression (FullAdder indicates that the placement

for FullAdder is started. But before it can be finished the placement for

HalfAdder has be generated. An open bracket “(” indicates a step down

in the hierarchy and the corresponding closing bracket “)” represents the

backward direction. In our example the placement for FullAdder can be

Section 9.2 The Layout for the Fulladder 205

finished after that for HalfAdder is finished.

After the placement is done, the system can generate the final layout of the

circuit. Again this is done in a bottom–up manner. First the layout for

HalfAdder is created, then that for FullAdder.

Finally the system displays information about the space used for the total

layout of the circuit. Here you get the sizes for all treenodes in the hierarchy,

i.e. also the sizes of the basic cells are shown, for which the layout is given

within the corresponding basic cell library.

The tabular with the title AREA-PROTOCOL shows the size information of

the circuit. In detail you can see, how much area is used for the wiring

in the different layers. In our example, where we did not call the layer

assignment and power supply tool, all wires are layed out in the default

layer 0, such that you can read the information Layer 0: 1605.36 um^2.

This indicates that all wires in the circuit use an area of 1605.36µm2. In

the second line of the tabular the system displays the total used area of

the layout, i.e. the area for the wires plus the area for the basic cells. In

our case, this is 33605.36µm2. This value is put in relation to the enclosing

rectangle of the circuit, such that we have a coverage of 57.09%.

Figure 9.2: Hierarchical layout for FullAdder

Figure 9.2 shows the hierarchical layout for the FullAdder, i.e. you see

the highest hierarchy level with the macro cells for the two HalfAdder.

206 Chapter 9. Geometrical Layout Design

The layout differs from the schematic input of the circuit, because the used

area is smaller, if the instances for the HalfAdder are placed beside each

other. But note that the topology of the layout is the same as that for the

schematic input. This means that the system does not insert new crossings

of wires or totally changes the arrangement of the cells.

Graphical Expansion

Because the display of the layout at the highest hierarchy level does not

give a good impression of the structure of the circuit, you can expand the

graphical representation. For the expansion of the layout the system offers

you three different operations:

2 expansion of a single instance

2 expansion of one instance for some levels

2 full expansion of the whole circuit

We will explain the first two operations later in this chapter. In the case of

our small FullAdder example they nearly do the same as the full expansion

operation.

For a complete expansion of the layout you should select the entry All

from the submenu -graphical Expansion-. After the activation of this

push button, the layout in the workarea is drawn again, where the two

HalfAdder instances are replaced by their contents as you can see it in

figure 9.3.

With the help of the entry Reset from the submenu -graphical

Expansion- you can restore the display of the highest hierarchy level. After

this first impression of the layout subsystem in CADIC we will turn to a

larger example in order to explain the remaining menu functions.

Section 9.3 Layout for the 16 Bit Conditional Sum Adder 207

Figure 9.3: Complete expansion of the layout for FullAdder

9.3 Layout for the 16 Bit Conditional Sum Adder

Load Circuit

Before you can create the layout of a circuit you have to load it first. But you

can use the DAG structure if you already loaded the circuit within another

tool of the system, as for example the layer assignment tool. Especially you

must not load it newly, if you want to use the results of a previous tool.

In order to load the 16 bit conditional sum adder you should select the

entry CSA[n] from the schematic list window and type in 16 at the prompt

window for the parameter values.

Hierarchical Placement

The function hierarchic from the submenu -Placement- will create a hi-

erarchical geometrical layout. After you have created the DAG structure for

CSA[16], press the button hierarchic within the submenu -Placement-.

After that the layout procedure starts up and you can read the following

informations in the message window:

EMBED < CSA[16] >

Slicing:

Generate Slicing for CSA[1]

Generate Slicing for SEL[1]

208 Chapter 9. Geometrical Layout Design

Generate Slicing for SEL[2]

...

Generate Slicing for CSA[16]

Place the Slicing-Tree for CSA[16]

(CSA[16](CSA[8](CSA[4](CSA[2](CSA[1])(SEL[2](SEL[1])))(SEL[3]))

(SEL[5]))(SEL[9](SEL[4])))

Layout-Generation:

Generate the Layout for CSA[1]

Generate the Layout for SEL[1]

Generate the Layout for SEL[2]

...

Generate the Layout for CSA[16]

Data Space for BTG of CSA[16]: 66084 Bytes

Data Space for BTG of CSA[8]: 36336 Bytes

...

Total Data Space for BTG: 291192 Bytes

+-----------------------------AREA-PROTOCOL-----------------------------+

Lay 0: 0.00um^2 Lay 1: 112918.28um^2 Lay 2: 47372.92um^2 PLay: 0um^2

+---+

Total area: 1425056.83um^2 Circuit Area: 5395939.12um^2 TA/CA:26.4%

+---+

During layout design, many informations about the design process are dis-

played in the message window which include the information of slicing cells,

placing the slicing-tree, layout generations for each subcircuits, and data

space sizes of BTG. After the layout is successfully completed, the system

will display an AREA-PROTOCOL table in the message window which

gives the information about design areas. In the table, the areas for Layer

0, Layer 1, Layer 2 and Power-Layer represent the areas of wires, and

Total used area is the sum of areas of all cells and areas of all wires.

Circuit area indicates the area used by the circuit after placement which

is the enclosing rectangle region. The term TA/CA gives the rate of the total

used area and the circuit area.

Section 9.3 Layout for the 16 Bit Conditional Sum Adder 209

In our example we have called the layer assignment tool before the genera-

tion of the layout. Therefore in the table, the area of Layer 0 is 0.00µm2.

Layer 1, Layer 2 are 112918.28µm2 and 47372.92µm2, repectively. The

Power-Layer is not used. If you do not call the layer assignment tool, all

the wires are embedded in the default layer 0.

The total used area is 1425056.83µm2, and the circuit area is 5395939.12µm2.

The rate between the total used area and the circuit area TA/CA is 26.4%.

The complete area protocol is written in the directory defined by the en-

vironment variable PROTDIR. The name of the area protocol is the same as

the name of the circuit and has a suffix .areaprot. In order to write the

area protocol file, you should first set a value for the environment variable

PROTDIR. A suggested value is ../Data/Prot. If you do not set up the

environment variable PROTDIR, the message window will display:

Environment Variable PROTDIR undefined

Now the hierarchical placement result of CSA[16] is shown in the work area.

Only a part of it is visible, because the layout is too large to fit in the window

in normal display mode.

Change the Display Mode

In order to see the whole layout of CSA[16] you can scale down the display.

With the help of the entry Win.Fit. from the submenu -Views- the layout

is scaled in both dimensions such that it totally fits in the workarea. The

width and height are both scaled by the maximum factor.

Figure 9.4: Fit the display of the layout CSA[16] in the workarea

210 Chapter 9. Geometrical Layout Design

9.3.1 Layout Expansion

After activating the window fit operation the layout of CSA[16] is displayed

as it can be seen in figure 9.4. Now we will successively expand the graphical

representation of this layout.

Expansion of a Single Instance

With the help of the entry Inst from the submenu -graphical Expansion-

you can resolve the hierarchy level of one single instance. After you have

activated this menu point you are in the instance selection mode. If you

move the pointer into the workarea, the nearest instance in the layout will

be highlighted, i.e. its border changes from red to cyan. Now press the left

mouse button and the instance will be replaced by its contained subcircuits.

In figure 9.5 we have selected the right instance CSA[8] and substituted by

the following hierarchy level. This operation illustrates the recursive de-

scription of the conditional sum adder, because CSA[8] is built by the same

components as CSA[16], but with smaller parameter values and therefore

smaller layout areas.

Figure 9.5: Expanding the right instance CSA[8] one single step

After the expansion you remain in the instance selection mode in order

to expand more instances. Note that now the subcircuits from the just

expanded instances are also selectable, because they are at the same level

now. You can abort the selection mode by pressing the right mouse button

within the workarea.

Expansion over more Levels

While you could perform a detailed expansion of the layout with the help

of the previously explained function Inst, this operation is tiresome, if you

want to expand the layout down to the lower levels. For this purpose CADIC

Section 9.3 Layout for the 16 Bit Conditional Sum Adder 211

offers you the entry Lvls from the submenu -graphical Expansion-.

After the activation of this menu item you are in instance selection mode

again in order to choose the candidate for the expansion operation. Pick

the highlighted instance by pressing the left mouse button. Now an input

window will popup on the workarea asking you the number of levels, for

which the instance should be expanded:

Please enter the Depth of Expansion: <3 >

In figure 9.6 we have expanded the left instance CSA[8] for three hierarchy

levels, i.e. the instances you see at the top of the layout are 1 bit adders

CSA[1].

Figure 9.6: Expanding the left instance CSA[8] for three hierarchy levels

After the instance has been expanded you are still in instance selection mode

which can be aborted by pressing the right mouse button in the workarea.

You can use the other expansion operation on an already expanded layout,

i.e. you can first expand one instance for some levels, then pick single

instances and expand them step by step, etc.

With the help of the function Lvls you can expand one single instance down

to the basic cell level. This is done, if you enter a depth for the expansion

which is larger than the lowest level number. An easier way is to enter -1,

especially if you do not know, how much hierarchy levels are contained in

the corresponding instance.

Full Expansion of the Layout

As shown for the example of the FullAdder we can completely expand

the layout with the help of the entry All from the submenu -graphical

Expansion-. If you choose this menu item, the layout is fully expanded

down to the level of basic cells as you can see it in figure 9.7.

212 Chapter 9. Geometrical Layout Design

Figure 9.7: Complete expansion of the layout for CSA[16]

With the help of the entry Reset from the submenu -graphical

Expansion- you can restore the display of the highest hierarchy level, i.e.

the system will display the layout in the form of figure ??, because you

previously activated the window fit display mode.

9.3.2 Layout Tracing

You can hierarchically trace your layout design by using the function

Tracing. As in the case of the Cgraph structure there are two directions

to trace the layout: Down and Up. We still take the circuit CSA[16] as an

example to explain this function. For these tracing functions yon can refer

to the Section 5.6 for references.

Tracing Down

Because you are now in the highest level of the layout, you can use the

tracing down function only. If you select the entry Down in the submenu

-Tracing-, you are in instance selection mode. Move the cursor further

to the subcircuit that you want to trace into, as for example the right

instance CSA[8], and make its border highlight in blue. Now press the left

mouse button and the hierarchical layout of CSA[8] appears in the work

area replacing that of CSA[16] as shown in figure 9.8.

Figure 9.8: Tracing down to the layout of CSA[8]

Note: You can not use the expansion functions from the submenu

-graphical Expansion- during the tracing of the layout. For example,

Section 9.3 Layout for the 16 Bit Conditional Sum Adder 213

if you use the function Inst within the above CSA[8], you will see the

following warning the message window:

WARNING: no expansion while tracing!

If you want to exit the tracing down function, move the pointer to the

work area and press the left mouse button. Then, you return to the menu

selection mode again. If you are in the lowest level of the hierarchical layout,

you can also press the left mouse button to quit the function of tracing down

and return to the menu selection mode again.

At each level of the hierarchy you can enlarge the display of the layout by

selecting the entry Win.Fit from the submenu -Views-. Then the current

hierarchy level is scaled, such that it fits in the workarea. This is very

helpful, if you trace down to the lower hierarchy levels, where the areas of

the components are very small.

Tracing Up

If you are not at the highest level of the layout hierarchy, you can use the

tracing up function to go back to higher levels. Each time you select the

entry Up from the submenu -Tracing- you return to the next higher level

of your tracing path. Thus, you can repeatedly press the push button Up

until you are at the desired level.

9.3.3 Layout Views

The view functions consist of the zoom functions, the redraw function and

the window fit function which we have already mentioned above. You can

use the functions Zoom In and Zoom Out to enlarge or shrink the current

display of the layout. The functions Redraw and Win.Fit can be used to

adjust the display size to fit in the work area.

Zoom In

In order to enlarge the current display in the workarea, you can select the

entry Zoom In in the submenu -Views-. Move the pointer into the workarea

214 Chapter 9. Geometrical Layout Design

and you can locate the start position of the zoom window. After you have

fixed the start point by pressing the left mouse button you can drag a

rectangle frame in order to setup the area of the layout which will be scaled

to fill the whole workarea. Locate the opposite corner of the rectangle by

pressing the left mouse button again. Then, the chosen part is enlarged

and appears in the work area to replace the former display. After that you

automatically return to the menu selection mode again.

Zoom Out

By using this function you can shrink the current display that has been

enlarged. Press the push button Zoom Out in the submenu -Views-, then

you return to the previous display mode, i.e. all selected areas during the

zooming operations are pushed onto a stack. Each zoom out operation pops

the upmost frame from the stack and restores the corresponding display of

the layout.

Note: Only after you have enlarged a display, you can use the function Zoom

Out to shrink it again. If there are no frames on the stack, the function Zoom

Out will have no effects.

Redraw and Window Fit

In general the display of a layout has not always a just suitable size for the

workarea. For example, the initial display of the layout for CSA[16] shows

only a part of the whole layout. In order to display the layout fully within

the workarea you can select the entry Win.Fit in the submenu -Views- as

we have already shown it in the previous sections. Figure ?? shows the

result after executing the function Win.Fit for CSA[16].

If you want to return to the initial display, you can use this function. By

pressing the push button Redraw in the submenu -Views-, the initial display

will appear in the workarea to replace the current display.

Section 9.3 Layout for the 16 Bit Conditional Sum Adder 215

9.3.4 Layout Scrolling

You can scroll the display of the layout result in the work area by using

the scroll functions. The scroll functions consist of eight directions: use the

function UpLt to scroll directly to the upper left corner, Up to scroll up one

screen, UpRt to the upper right corner, Left to the left, Right to the right,

DnLt to the lower left corner, Down to scroll down one screen and DnRt to

the lower right corner. If you want to use one of these functions, press the

corresponding push button in the submenu -View-. You can repeatedly use

the same function by pressing the corresponding push button many times

until you obtain the desired position.

9.3.5 Output of the Layout Result

By using the output function you can obtain a postscript file of your layout

design. Suppose that you want to output the layout result of CSA[16].

Move the cursor to the push button PostScript in the submenu -Output-,

and press the left mouse button. Now, a input window pops up onto the

work area with the following prompt:

Please enter Scaling Factor: <1 >

The scaling factor must be a positive number. If you do not input any

number, but direct press the Return key, the input window will disappear

from the work area and abort the output function. Here we choose the

scaling factor 1 first and press the Return key. Then, a prompt appears in

the input window as follows:

Circuit needs 02×10 pages. Accept (y/n)?: <n>

It means that the circuit will be output in the size of twenty A4 pages. If

you accept this size, type y and press the Return key. If you do not accept

this size, type n and press the Return key. Now, the input window shows

the prompt again:

Please enter Scaling Factor: <0.25 >

216 Chapter 9. Geometrical Layout Design

Now we select the scaling factor 0.25 and press the Return key. After that,

the following message appears in the input window:

Circuit needs 01×03 pages. Accept (y/n)?: <y>

It means that the circuit will be output in the size of three A4 pages. If

you want to accept this size, you can type y. Otherwise, type n in order to

select another output size.

After you type y and press the Return key, the layout that is currently

displayed in the workarea will be output and stored in a file with the suffix

ps, such as CSA[16].ps within the current directory.

10
Recursive Specifications

10.1 Odd–Even–Mergesort

In this section we will show the specification of a class of sorting networks,

where we exploit the regularities in the underlying algorithm to get a handy

recursive description. This class of sorting networks uses the algorithm of

Batcher’s Odd–Even–Merge ([Knu73]).

min{a1,...,an}:t

a1:t

Sortn

an:t

max{a1,...,an}:t

Figure 10.1: Sorting circuit for n = 2k elements of type t

The task of the circuit can be seen in figure 10.1. The input is a sequence

of n elements a1, . . . , an of an arbitrary, but fixed, type t. The output of

the circuit should be the sorted sequence in ascending order. The most

important property of our specification is that the sorting algorithm can

be described independent of the type t of the elements. As mentioned in

section 5.3.2 this is one of the advantages of the use of formal wire variables

as it will become clear in the following.; 5.3.2

218 Chapter 10. Recursive Specifications

The whole circuit can be configured for sorting a specific type of elements

by the declaration of a basic compare component CMP. This component has

to compute the function

CMP : T × T −→ T × T mit CMP (a, b) = (min(a, b), max(a, b))

Here T denotes the set of values for the elements of type t (e.g. T = {0, 1}).

An analogous mechanism can be found within programming languages,

where a parameter of a procedure may be another procedure. For example

you may use a construct like

SortedList = MergeSort (List, CompareFunction),

where CompareFunction can be an arbitrary ordering operation on two

elements.

10.1.1 The Sorting Algorithm

Our design task here is to specify a circuit that sorts a sequence of elements

in increasing order. For simplicity we assume that the number of elements

in the sequence is a power of two. The mathematical knowledge needed for

this problem is the following:

2 If the sequence has length one, then the output is equal to the input.

2 To sort a larger sequence, it is sufficient to sort the first half and the

second half and to merge the two sorted sequences.

2 The merging of two sequences of length one can be done by one basic

compare component.

2 To merge two sequences a and b of length n greater than one, it is suf-

ficient to merge the even–indexed elements of a with the odd–indexed

elements of b, to merge the odd–indexed elements of a with the even–

indexed elements of b and to send the outputs of the two half–sized

merging circuits through an array of n basic compare components.

The ith compare component is then connected to the ith outputs of

the two half–sized merging circuits.

Section 10.1 Odd–Even–Mergesort 219

The basic algorithm begins with a recursive sort of the first half and the

second half of the input sequence. The recursion ends with the input se-

quence of one element. The two sorted subsequences are then merged by

the recursive odd–even merge technique. This recursion ends with the two

input sequences each consisting of only one element.

10.1.2 Graphical Specification

Now we must translate these specifications into graphical inputs for CADIC .

As in the case of the conditional sum adder (c.f. chapter 4) this can be easily

done within a parameterized combinational circuit for sorting n numbers of

type t.

As you directly see, the end of the recursion for sorting one single element, is

given by a wire from the northern to the southern border of the schematic.

The width of this wire is described by the variable @t to denote, that it

represents a single element of type t.

The graphical input for the general equation for n elements is shown in

figure 10.2. This schematic mirrors the second algorithmic statement from

above. You see the splitting of the sorting of n elements into the parallel

sorting of n
2

elements. The resulting presorted sequences are then merged

together by an instance Merge[n]. The width of the wires in figure 10.2 is

given by wire variables, because the number of single binary wires in each

bus depends on the number of elements n and on the coding of the element

type t. Implicitly the variable @s[n] represents n
2

elements of type t and

@t[n] stands for n such elements.

From our mathematical description of the sorting algorithm follows that

the merging subcircuit can also be given by a recursive specification. The

task of the circuit Merge[n] is to merge two presorted sequences of length n
2

together to a completely sorted sequence of length n. As mentioned above

this can be done by using two instances of Merge[n/2] in parallel. The first

instances merges the even–index elements of the first sequence with the odd–

indexed elements of the second sequence. The second Merge[n/2] merges

220 Chapter 10. Recursive Specifications

Figure 10.2: Recursive definition of the sorting of n > 1 elements

the odd–indexed elements of the first sequence with the even–indexed ele-

ments of the second sequence. Finally the ith outputs of these two instances

have to be fed into a basic compare component (0 ≤ i < n
2
).

Figure 10.3 shows the graphical specification of Merge[n]. The splitting of

the input sequences into even–indexed and odd–indexed elements is done

by the instance EvenOdd[n/2]. In the subcircuit Shuffle[n/2] the ith

outputs of the two Merge[n/2] are routed beside each other, such that they

can be fed into an array of n
2

basic compare components in Compare[n/2].

The subcircuits EvenOdd[n] and Shuffle[n] consist only of wiring ele-

ments. Their specifications are very similar. The task of EvenOdd[n] is

to reorder two input sequences a = a0, . . . , an−1 and b = b0, . . . , bn−1 into

four subsequences of the form s1 = a0, a2, . . . , an−2, s2 = a1, a3, . . . , an−1,

s3 = b0, b2, . . . , bn−2 and s4 = b1, b3, . . . , bn−1. Shuffle[n] is used to trans-

form two input sequences a = a0, . . . , an−1 and b = b0, . . . , bn−1 into one

output sequence s = a0, b0, . . . , an−1, bn−1, i.e. the ith elements of both

Section 10.1 Odd–Even–Mergesort 221

Figure 10.3: Recursive specification for the merging subcircuit Merge[n]

input sequences should be routed beside each other.

The shuffling subcircuit can be recursively defined in the following way: to

shuffle two input sequences of length n > 1 we shuffle the first n
2

and the

second n
2

elements of both sequences in parallel. Then the output sequences

of these two instances form the shuffled sequence of Shuffle[n]. The basic

shuffling operation for two input sequences a = a0 and b = b0 of length

n = 1 are two simple feed throughs of the element type @t.

Figure 10.4 shows the general recursive equation for the shuffling subcir-

cuit. In the left instance Shuffle[n/2] the first n
2

elements of both input

sequences are shuffled together and the last n
2

elements in the right instance.

The width of a wire representing one half of an input sequence is described

by the variable @r[n], and the output of each instance Shuffle[n/2] by

the expression 2*@r[n], because it combines two sequences of width @r[n].

The recursive specification of EvenOdd[n] can be derived from the fact that

222 Chapter 10. Recursive Specifications

Figure 10.4: Recursive specification of the shuffling operation for two se-

quences of n elements

we reduce the splitting of two input sequences of length n into the paral-

lel splitting of each sequence into even–indexed and odd–indexed elements.

Then the final output of EvenOdd[n] is the combination of the even–indexed

elements of sequence a with the even–indexed elements of sequence b. The

same has to be done for the odd–indexed elements. This means that we have

the same arrangement of macros EvenOdd[n/2] as in the shuffling subcir-

cuit. But the input wires at the northern border have the width 2*@r[n],

because it represents the two halfs of sequences a and b. The output of the

instances EvenOdd[n/2] are four wires of width @r[n], each representing

the even–indexed and odd–indexed elements of the input sequences. To get

the final result we still have to cross the wire representing the odd–indexed

elements from the sequence a with the wire representing the even–indexed

elements of sequence b which corresponds to the wiring above the instances

in Shuffle[n].

Section 10.1 Odd–Even–Mergesort 223

The last subcircuit in Merge[n] represents an array of n
2

basic compare

components. We have already shown the specification of an array of k

elements during the description of the conditional sum adder in chapter 4.

There we had to specify an array of k pairs of multiplexers in the subcircuit; 4.8.4

SEL[k]. The base of the recursion in this case is given by a call of the basic

compare component as it is shown in figure 10.5.

Figure 10.5: Single element of the array of compare components

The specification of the sorting network is independent of the type t of the

elements. The inputs shown above can be used to sort a sequence of n

elements of arbitrary type into increasing order. The type of the elements

only has influence on the refinement of the instance CMP. Here we give a

specification for the simple example that we want to sort single bit values.

We have to implement the function

CMP : {0, 1} × {0, 1} −→ {0, 1} × {0, 1}

with

CMP(a, b) = (min(a, b), max(a, b)).

224 Chapter 10. Recursive Specifications

It is obvious that for two single bits the minimum of both is given by an

AND gate and the maximum is the output of an OR gate. You can define

an appropriate schematic CMP with two instances AND2 and OR2 which are

both connected to the two input wires.

Figure 10.6 shows the layout for the sorting network for 64 single bit val-

ues. You can find all schematics for the description of Sort[n], if you start

the shell script merge sort from the Examples directory. All schemat-

ics needed to create the layout from figure 10.6 are Sort[n], Sort[1],

Merge[n], Merge[1], EvenOdd[n], EvenOdd[2], Suffle[n], Shuffle[2],

Compare[n] and Compare[1]. The schematic CMP has to be replaced by the

appropriate compare function for the specific type of elements.

In the DAGDIR from this shell script there is also a parameterized description

of the compare component for binary values of k bit. If you want to sort 16

bit integer values for example, you must call the component Cmp[16] within

the schematic CMP, i.e. replace the circuit from above (AND2 and OR2 gate)

by this macro.

Lemma 10.1: The complexity of the sorting network is given by

size(Sort[n]) =
log n · (log n + 1)

2
· n

2
· C,

where C denotes the size of the basic compare component. 2

Proof: From the recursive definition we get the following equations:

size(Sort[n]) = 2 · size(Sort[n/2]) + size(Merge[n]),

size(Merge[n]) = 2 · size(Merge[n/2]) + size(Compare[n/2]),

size(Sort[1]) = 0,

size(Merge[2]) = C,

size(Compare[n]) = 2 · size(Compare[n/2]),

size(Compare[1]) = C,

The subcircuits EvenOdd[n] and Shuffle[n] have size zero, because they

do not contain any basic cell.

Section 10.1 Odd–Even–Mergesort 225

Figure 10.6: Layout for the sorting network for 64 elements of single bit

values

226 Chapter 10. Recursive Specifications

From the first two equations it follows

size(Sort[n]) =
log n−1∑

i=0

2i · size(Merge[n
2i

])

and

size(Merge[n]) =
log n−1∑

i=0

2i · size(Compare[n

2i+1
])

Obviously it holds

size(Compare[n]) = n · C

Then we have

size(Merge[n]) =
log n−1∑

i=0

2i · n

2i+1
· C

= log n · n
2
· C

and

size(Sort[n]) =
log n−1∑

i=0

2i · log
n

2i
· n

2i+1
· C

=
n

2
· C ·

log n−1∑
i=0

(log n− i)

=
n

2
· C · (log2 n− (log n− 1) · log n

2
)

=
log n · (log n + 1)

2
· n

2
· C

Lemma 10.2: The complexity of the DAG structure for Sort[n] is

5 · log n + 2 treenodes for all n > 1. 2

Proof: We leave the formal proof of this lemma to the reader. You can

easily derive it, if you consider that there are five subcircuits, which have

a recursive description of logarithmic size, namely Sort, Merge, Shuffle,

EvenOdd and Compare.

Section 10.2 Integer Multiplication 227

10.2 Integer Multiplication

Now we will demonstrate the power of recursive specifications by the exam-

ple of a family of multipliers for binary numbers. This type of multiplier

is a tree multiplier which is a modified version of a Wallace tree multiplier

([Wal64]) made suitable for VLSI design by Luk and Vuillemin ([LV83]).

Figure 10.7: Computation of the partial products

Let a = (an−1, . . . , a0) and b = (bn−1, . . . , b0) be the binary representations

of the two factors. The product of a and b is equal to the sum of n binary

numbers of length 2n. These numbers are represented by the n lines of the

following matrix Pn, where aibj denotes the logical and or the product of

the bits ai and bj .



0 0 · · · 0 0 an−1b0 an−2b0 · · · a1b0 a0b0

0 0 · · · 0 an−1b1 an−2b1 an−3b1 · · · a0b1 0
...

...
...

...

0 an−1bn−1 · · · a2bn−1 a1bn−1 a0bn−1 0 · · · 0 0



228 Chapter 10. Recursive Specifications

The matrix Pn shows how to compose an n bit multiplier by 2n identical

columns (or n identical rows). These n numbers are called the partial prod-

ucts of a and b. With the sequential method (shift and add algorithm) the

partial products are accumulated one after the other. This can be speeded

up by parallelizing the addition steps to a time of O(log n).

In a first step we have to compute the values of the partial products in

each column. This will be done by the subcircuit col[2] as it is shown

in figure 10.7. It is obvious that we need this subcircuit n2 times in the

multiplier.

Figure 10.8: Recursive specification of one column of the partial multiplier

The idea of the tree multiplier is to reduce the number of rows in each step

by the half. This is done in each column by combining four partial products

to two, i.e. it holds the equation

pk
4i + pk

4i+1 + pk
4i+2 + pk

4i+3 = pk+1
2i + pk+1

2i+1

where i ∈ {0, . . . , n
2k+2 − 1} denotes the matrix element and k the depth of

Section 10.2 Integer Multiplication 229

the reduction. Figure 10.8 shows the recursive specification of one single

column of the n bit multiplier. You see there the reduction of two column

parts of height n
2

by a subcircuit CSA4to2. At the end of the reduction we

have two binary numbers of length 2n which have to be added to get the

final result of the multiplication.

As the equation from above implies the reduction subcircuit CSA4to2 can

be realized by two full adders as it is shown in figure 10.9.

Figure 10.9: Recursive specification of one column of the partial multiplier

Now the n bit multiplier mul[n] is given by an instance of the subcircuit

c[n,2*n], where c[n,i] contains i columns of the n bit multiplier.

Because we proposed at the beginning of this section that n = 2k for some

k ≥ 1, we can compose i columns c[n,i] by two instances of c[n,i/2].

This shows that each wire segment of type @k[i] is replaced by two wires

of type @k[i/2].

Figure 10.10 shows the layout for the 16 bit integer multiplier. This circuit

230 Chapter 10. Recursive Specifications

Figure 10.10: Layout for the 16 bit integer multiplier

Section 10.2 Integer Multiplication 231

contains about 3000 basic cells, the calculation of the shown layout takes

nearly three minutes on a workstation.

Because of our paramterized description we could extract any version as

for example an 1024 bit integer multiplier. It is obvious that this circuit

would be too large to fit on one single chip. For that purpose in [HMZ91]

it is shown how a very large integer multiplier (n � 64) can be described

with the help of CADIC . The whole circuit is distributed over several chips,

where the following goals have been respected:

2 the multiplier should still have an optimal performance O(log n). An

important fact to achieve this goal is a small amount of communication

between the different chips.

2 the design should be built over a small number of different types of

chips. This is important to minimize the fabrication and test costs,

because for each chip type we have to build an expensive prototype.

2 the total number of chips should be minimized. This means that each

chip type has to be very regular and compact in its layout in order to

minimize the number boards.

The main problem with this design is to find a good splitting of the circuit,

such that the number of different chip types and the communication be-

tween the chips are minimized. In [HMZ91] it is shown that from the basic

principle of the Wallace tree multiplier as it is presented above a splitting

into three different chip types can be found:

2 chip type 1 calculates the matrix of the partial products. For this type

we can use an 32 bit integer multiplier as we have designed it above.

2 chip type 2 reduces the partial products according to the Wallace tree

principle and produces two bit strings of length 2n, which have to be

added in a final step.

2 chip type 3 build a 2n bit adder for the final summation of the reduced

partial products.

The following tabular illustrates the complexity of the whole design for an

232 Chapter 10. Recursive Specifications

512 bit and an 1024 bit multiplier. The number of chips is based on the

fact that today a 32 bit multiplier or a 64 bit adder can be realized on one

single chip.

bitlength chip type 1 chip type 2 chip type 3 total number

512 64 76 9 149

1024 256 240 17 513

10.3 A Realization of a Fast Divider

10.3.1 Introduction

This is the description of the realization of a divider which has computation

time O(n) where n is the length of one operand in bits. It is faster than a

conventional array–divider based on a subtract–and–shift algorithm (which

has a computation time of O(n2)) but needs a similar amount of hardware.

The divider is based on an algorithm using a redundant binary number

representation.

Since the divider is realized as a parameterized design using CADIC , it

is possible to compute the layout for arbitrary wordlength (n ≥ 3) of the

operands by simply changing the parameter value of n.

For more information see: ’An On-Line Error-Detectable Array Divider

with a Redundant Binary Representation and a Residue Code’ by Naofumi

Takagi and Shuzo Yajima of the Department of Information Science at the

Kyoto University (Proceedings: International Symposium on Fault-Tolerant

Computing 1988)

10.3.2 General Description of the Divider

Inputs

Divider[n] takes 2(n− 1) bits as inputs which are numbered x1, . . . , xn−1

and y1, . . . , yn−1. These are interpreted as follows:

x = [1.x1 . . . xn−1] with value

Section 10.3 A Realization of a Fast Divider 233

‖x‖ = 1 +
n−1∑
i=1

xi · 2−i

y = [1.y1 . . . yn−1] with value

‖y‖ = 1 +
n−1∑
i=1

yi · 2−i

Precondition: ‖x‖ ≥ ‖y‖

Outputs

Divider[n] has n bits as outputs numbered z1, . . . , zn. These are inter-

preted as follows:

z = [1.z1 . . . zn−1] with value

‖z‖ = 1 +
n∑

i=1

zi · 2−i

‖z‖ has the following property:∣∣∣∣∣‖z‖ − ‖x‖‖y‖
∣∣∣∣∣ < 2−n

Redundant binary numbers

The division–algorithm uses a redundant binary number representation.

There are three different digits: 1̄, 0 and 1. The values of these digits are

−1, 0 and 1 respectively.

The value of a bitstring x in this representation is denoted by ‖x‖SD2. If a

string s is written [s]SD2 the digits are redundant digits (1̄, 1, or 0).

If A = [a0.a1 . . . an−1]SD2; ai ∈ {1̄, 0, 1}

then ‖A‖SD2 =
n−1∑
i=0

ai · 2−i

The digits of the representation are coded in binary as follows:

1̄ → 01

0 → 00 or 11

1 → 10

234 Chapter 10. Recursive Specifications

Using this representation, it is possible to perform parallel addition of two

binary numbers in constant time independent of the wordlength of the

operands. This causes the speedup in the algorithm.

The Division Algorithm

The iteration is done using the following rule:

Rj = Rj−1 − qj · 2−j · Y (j ≥ 1)

and we start with R0 = X − Y ; q0 = 1.

(So Rj is the remainder at stage j)

The qj are chosen so that the following inequality holds:∣∣∣∣Rj

Y

∣∣∣∣ ≤ 2−j

Representation of the Rj :

Rj−1 = [rj−1
0 .rj−1

1 . . . rj−1
j−3r

j−1
j−2r

j−1
j−1 . . . rj−1

n+j−2]SD2

for j = 1, . . . , n− 1

Steps of the Algorithm

1. q0 = 1; R0 = X − Y

(Performed by the top–component)

2. for j := 1 to n do

begin
•

qj :=


−1 : ‖rj−1

j−2r
j−1
j−1r

j−1
j ‖SD2 < 0

0 : ‖rj−1
j−2r

j−1
j−1r

j−1
j ‖SD2 = 0

1 : ‖rj−1
j−2r

j−1
j−1r

j−1
j ‖SD2 < 0

(Performed by the DU-component)

•

Rj := Rj−1 − qj · 2−j · Y

(Performed in DU-, M- and L-Cells)

Section 10.3 A Realization of a Fast Divider 235

end

3. Transformation of [q1 . . . qn]SD2 into a binary number [z1 . . . zn] such

that

‖1.q1 . . . qn‖SD2 = ‖1.z1 . . . zn‖

(Performed in the Red2BinFast–component)

10.3.3 Graphical Specification of the Divider

Top Level: Divider[n]

Figure 10.11: The top level of Divider[n]

The Array[n]–component (see figure 10.11) is the part where the division

is performed. It gets the two operands A and B.

The Red2BinFast[n]–component (left of the Array[n]-component) trans-

forms the result from redundant–binary format to standard binary format.

Array[n]

236 Chapter 10. Recursive Specifications

Figure 10.12: Array[n]

The top1–component (see figure 10.12) feeds 4 bits with value zero into the

leftmost inputs of first row[n].

The top[n-1]–component performs the first step of the algorithm. B is

subtracted from A and the result is transformed into the right format for

the first row of the divider.

The first row[n]–component is very similar to the remaining n− 1 rows

of the divider (in the array[n-1,n]–component), in fact it has the same

components but it’s wiring is slightly different because it is the uppermost

row.

The array[n-1,n]–component consists of n − 1 identical rows where the

subtraction and the computation of the result bits is performed.

The cut[n-1]–component simply cuts every third bit of the output from

the last row. This is done to get rid of the divisor–bits that are channeled

though the whole array so that we only have the remainder–digits at the

Section 10.3 A Realization of a Fast Divider 237

bottom of the design.

top[n]

The shuffle[n]–component performs the first subtraction by simply trans-

forming the input an−1 . . . a0bn−1 . . . b0 into bn−1an−1bn−2an−2 . . . b0a0. The

sequence is other than one would expect (a first and then b) because the

inputs of the rows are oriented that way.

The double y[n] component doubles every second bit in it’s input. It

transforms x2n−1x2n−2x2n−3 . . . into x2n−1x2n−2x2n−2x2n−3 This is done

to fit the inputs of the first row.

first row[n], array[1,n]

Figure 10.13: One row of the division array

The DUV–component is the DU–component with some additional wiring. The

LV–component is the L–component with wiring. The MROW[n-2]–component

consists of n− 2 MV–components.

238 Chapter 10. Recursive Specifications

The only difference between the first row and the n−1 following rows is the

one–bit line entering LV in the middle of the east side of the component. In

all other rows (named array[1,n]) (see figure 10.13) this input is fed by a

preset having value zero.

DUV

Figure 10.14: First part of each row DUV

The DU–component (see figure 10.14) has two tasks: It has two calculate

the two result–bits for the row and it has to perform the subtraction at the

three most significant digits. These digits are named rj−1
j−2, r

j−1
j−1 and rj−1

j (in

order of significance). Because they are in redundant binary format, each

digit is represented by two bits (minus and plus) with the meaning defined

in section 10.3.2 (the plus–bit is the first bit of every digit). The result–digit

qj is calculated according to the algorithm in section 10.3.2.

Note that the high index of a remainder–digit r corresponds to the number

of the row where the digit was computed while the low index corresponds

to the index of the digit in the remainder of this row.

Section 10.3 A Realization of a Fast Divider 239

The remainder digit rj
j−1

−
and the minus–bit of the remainder–digit rj

j are

calculated according to the following table:

rj−1
j−2 rj−1

j−1 1̄ 0 1

1̄ 0 / 1̄, 1̄ 1̄, 0

1̄ 1 1̄, 0 0, 1̄ 0, 0

0 1̄ 1̄, 0 0, 1̄ 0, 0

0 0 0, 0 0, 0 0, 1̄

0 1 0, 1̄ 0, 0 1, 1̄

1 1̄ 0, 1̄ 0, 0 1, 1̄

1 0 1, 1̄ 1, 0 /

The entries in the table are a, b where a is the redundant digit for rj
j−1 and

b is the bit for rj
j

−
. The last three columns stand for the different values of

the digit rj−1
j .

So the digits of rj−1
j−2 and rj−1

j−1 determine the row and the digit for rj−1
j

determines the column.

MV

The MV–component (see figure 10.15) is an M component with some ad-

ditional wiring. The MROW[n]–component consists of n such components.

3 of it’s input–bits are simply forwarded to the next MV -cell (namely the

digit rj−1
i−1 and the single bit rj−1

i−2

+
. The other inputs (the result–digit qj , the

divisor–bit yi−j and the remainder–digit rj−1
i) are used in the M-component

to compute two bits of two adjacent remainder–digits by performing a sub-

traction in the redundant binary format according to the algorithm in sec-

tion 10.3.2.

The computed function is shown using three tables (for space reasons). In

the first step, a bit bj
i is computed using the following rule:

bj
i =


yi−j if qj = 1̄

0 if qj = 0

ỹi−j if qj = 1

This results in the following table for the computation of bj
i :

240 Chapter 10. Recursive Specifications

Figure 10.15: Elements in the middle of each row MV

qj 0 1

1 1 0

0 0 0

1̄ 0 1

The columns 0 and 1 are determined by the value of yi−j. Note that qj is

the result–bit of the row and yi−j is a bit of the divisor.

Now we come to the subtraction rule:

rj−1
i 0 1

1 1, 1̄ 1, 0

0 0, 0 1, 1̄

1̄ 0, 1̄ 0, 0

The columns 0 and 1 are determined by the value of bj
i . The first component

in every entry is a bit called cj
i which corresponds to the bit rj

i−1

+
in MV.

The second component is a redundant binary digit called sj
i which is used

Section 10.3 A Realization of a Fast Divider 241

together with the bit cj
i to compute the redundant binary digit rj

i in the

following way:

sj
i 0 1

0 0 1

1̄ 1̄ 0

The columns 0 and 1 are determined by the value of cj
i . The output–bit

rj
i−1

−
is the minus–bit of the rj

i , so it is 1 when the entry in the table is 1̄

and 0 otherwise.

LV

Figure 10.16: The last element in each row LV

The LV–component (see figure 10.16) is an L–component with additional

wiring. The wiring forwards the 3 input–bits rj−1
j+n−3

+
, rj−1

j+n−2

−
and preset

to the first MV–component in the row. It is the task of the L–component to

perform the subtraction at the least significant position. The L–component

242 Chapter 10. Recursive Specifications

takes the bit yn−1 and the redundant binary digit qj (result–digit of the row)

and computes it’s output–bits according to the following table:

qj 0 1

1 1, 0 1, 1̄

0 0, 0 0, 0

1̄ 0, 0 1, 1̄

The columns 0 and 1 are determined by the value of yn−1. The first compo-

nent in every entry is a bit called cj
j+n−1 which corresponds to the output–bit

rj
j+n−2

+
in LV. The second component is the redundant binary digit rj

j+n−1.

The output bit rj
j+n−1

−
of LV is 1 if rj

j+n−1 = 1̄ and 0 otherwise.

Red2BinFast[n]

Figure 10.17: Reduction from the redundant representation to standard

binary representation Red2BinFast[n]

This component (see figure 10.17) is used to transform a number [x]SD2 with

n redundant binary digits into a number y with n binary digits.

Section 10.3 A Realization of a Fast Divider 243

If ‖x‖SD2 ≥ 0 then ‖y‖ = ‖x‖SD2 and c minus out = 0,

otherwise c minus out = 1 (which will not occur if the second operand of

the divider is not greater than the first operand, see section 10.3.2)

The preset(zero) gives the carry–in for the Red2BinFastRow[n] component.

Red2BinFastRow[n]

Figure 10.18: Recursive specification for Red2BinFastRow[n]

The transformation is done using the conditional–sum–principle. The com-

ponent is defined recursively down to the component Red2BinFastRow[1]

(see figure 10.18) exactly like a conditional–sum–adder. The function com-

puted by the

Red2BinFastRow[1]–component is shown in the following table:

q 0 1

1 1, 0 0, 0

0 0, 0 1, 1

1̄ 1, 1 0, 1

244 Chapter 10. Recursive Specifications

The columns 0 and 1 are determined by the carry–in of the component.

The first component of every entry is the sum–bit, the second component

is the carry–out.

The special mux[n]-component gets input xn−1 . . . x0yn−1 . . . y0. This is first

transformed by a shuffle–component into xn−1yn−1 . . . x0y0 and then given

into n muxes using the same select–signal. So it forwards x if select = 1

and y otherwise.

Figure 10.19 shows the final layout for the 16 bit divider without the sub-

circuit for the reduction of the result from the redundant to the binary

representation.

Section 10.3 A Realization of a Fast Divider 245

Figure 10.19: Layout for the 16 bit divider Divider[16]

246 Chapter 10. Recursive Specifications

11
Design Conversion

11.1 Introduction

In CADIC there are a lot of interfaces to convert its internal netlist format

into the exchange formats of commercial design systems. With the help

of these interfaces the designer can use the advantages of the graphical

editor, especially its parametric design methods, in a comfortable graphical

frontend.

The conversion tool in CADIC can generate different exchange formats out

of the graphical specification of a circuit. The tool works on the DAG

structure, from which it first builds a representation in form of a hierarchi-

cal netlist. In addition to the Cgraph structure each treenode in the DAG

holds a pointer to a netlist data structure for the corresponding hierarchy

level. Because some of the generated formats do not support a hierarchical

description, we have to expand the hierarchy into a flat netlist. This op-

eration can be done by an additional tool which can be called before the

exchange format is written to the output file (c.f. figure 11.1).

The hierarchical netlist data structure in CADIC contains all informations

needed to create all usual exchange formats. The structure of these formats

can be classified into the following two groups:

2 cell list: In the case of a flat netlist description this list only contains

the names of the basic cells in the design. Within a hierarchical format

this list contains the macros and basic cells for each hierarchy level.

248 Chapter 11. Design Conversion

Hierarchical
Netlist

Netlist
Expansion

Conversion
Interface

DAG Structure

EDIF

DEF

GHDL

SPICE

BLIF

NBS

SBS

XNF

CN

Figure 11.1: Components for generating exchange formats

2 logical connection: The description of the connections between the

cells bases on one of the following schemes:

2 net oriented netlist: The structure of the logical interconnections

is described by a list of signal nets. For each net of this list it is

denoted which pins of cells it combines.

2 cell oriented netlist: In this case the structure is given by a list

of macros and basic cells. For each element of this list, the iden-

tifiers of the corresponding signal nets at its pins are denoted.

Beside the functional description of a design some exchange formats also

support the specification of structural informations. For example this can

be used to describe clusters of cells, which have to be placed in the same

area. In our case this could be used to pack one hierarchy level in one

cluster.

11.2 Supported Formats

As you can see from figure 11.1 CADIC currently supports the following

exchange formats:

2 EDIF 2 0 0: The exchange format EDIF (Electronic Design Inter-

change Format,[Com87]), developped from the Electronic Industries

Association, meanwhile has established as standard format which is

used in a lot of commercial desgin systems (e.g. Cadence Design

Section 11.2 Supported Formats 249

System,[CAD92]).

2 DEF: The design system TANGATE ([SYS90]) uses the format DEF

(Design Exchange Format) which has been defined by TANGENT

SYSTEMS for the exchange of design data between the different tools

in TANGATE.

2 GHDL: The system HILO from GenRad ([Gen90]) contains the tools

HISIM, HIFAULT and HITIME for different simulation models of in-

tegrated circuits. The input of a design to this system is done in form

of a GHDL (GenRad Hardware Description Language) file, which is

hierarchically organized.

2 SPICE: The SPICE format has been developped for the circuit simu-

lation program SPICE from the University of California, Berkeley.

2 BLIF: The format BLIF is the input format for the logic synthesis

tools in the OCTTOOLS package which has been developped by the

University of California, Berkeley.

2 NBS: The format NBS and the modified format NBS(f) are used

within the layout system HULDA ([?]) from the Humboldt University

of Berlin.

2 SBS: With SBS (Strukturbeschreibungssprache) the graphical editor

can be used as frontend for the design system VENUS from SIEMENS.

It also can be used to address the logic simulator SMILE. In order to

use this format the design has to be developped with the basic cell

libraries ACMOS3 or ACMOS4. The ACMOS4 library is delivered

with the basic CADIC distribution.

2 XNF: The format XNF (Xilinx Netlist Format) is the netlist format

of the XACT system which is a popular FPGA (Field Programmable

Gate Arrays) development system from the Xilinx Company. With

this conversion interface, a CADIC design can be transformed to the

XACT system in order to realize the design with the FPGA technol-

ogy.

250 Chapter 11. Design Conversion

2 CN: The format CN is an alternative to SBS in order to give a CADIC

design to the VENUS system. This format is used by the graphical

editor SIGRED and from the layout subsystem in VENUS.

For a documentation of the structure of these different formats you should

look at the corresponding manuals. For the following the syntax of the

formats is not important.

11.3 Design Conversion

In order to activate the design conversion, you should select the entry

Netlist Formats from the submenu -Converter- within the main menu

of CADIC . Then a new submenu, named Converter is displayed, and you

are in the mode of the function selection.

The conversion routines create files for the different exchange formats. The-

ses files are placed in directories given by some environment variables. For

example the files created by the EDIF converter are located in a directory

which is given by the environment variable EDIFDIR. The formats with the

corresponding enviroment variables are listed below. Note, that you must

have write permission for these directories. If you do not want to distinguish

between the different formats you can set all the variables to the same di-

rectory as it is done in the example shell scripts in the CADIC distribution.

; 3

Load Circuit

If you want to convert the internal representation of a CADIC circuit into

other formats, you must first load its DAG data structure. As shown in the

previous chapters this can be done with the entry Load from the submenu

-Circuit-.

In this section we will load the 16 bit conditional sum adder and transform; 5.2.1

it to various exchange formats. To load this adder you should select the

entry CSA[n] from the circuit list window and type in 16 as the parameter

value in the following input window.

Section 11.3 Design Conversion 251

Convert Design

In the Converter menu the netlist formats are placed under the correspond-

ing name of the design system. For example, the format DEF is placed under

the system name -TANGATE-. The format EDIF 2 0 0 is placed under the

system name -HILO-, because EDIF can also be used as input for the sim-

ulation package HILO.

After loading the hierarchy of a circuit you can now choose the desired

exchange format. Then simply press the push button of the required netlist

format. After calling the corresponding conversion routine the system will

display a list of informations in the message window. The type of messages

depends on the selected format.

For example we will now convert the loaded 16 bit conditional sum adder

into the DEF format for the TANGATE design system. To do this select

the entry DEF from the -TANGATE- submenu. In the message window you

will see the following informations:

start of generating netlist for CADENCE

READY: netlist for CADENCE has been generated

The file of the generated format is put in the directory given by the envi-

ronment variable CADENCEDIR. The file has the name CSA0160.def, i.e. the

suffix of the created file corresponds to the exchange format. In some cases

the square brackets and the commas in the parameter list of the circuit

are replaced by other characters. In this case of the DEF format they are

replaced by 0. This replacement is done for the formats DEF, BLIF, NBS

and SPICE. For GHDL the square brackets and commas are replaced by .

The suffixes and their corresponding format names are grouped in the fol-

lowing way:

2 DEF: <name>.def in CADENCEDIR

2 BLIF: <name>.netblif in EDIFDIR

2 NBS: <name>.nbs in NBSDIR

252 Chapter 11. Design Conversion

2 NBS(f): <name>.nbf in NBSDIR

2 GHDL: <name>.cct in HILODIR

2 EDIF 2.0: <name>.edif in EDIFDIR

2 SPICE: <name>.cir in EDIFDIR

2 XNF: <name>.xnf in EDIFDIR

Here we will continue the example of the 16 bit conditional sum adder. We

will now convert the DAG structure into an EDIF file. To do this select

the entry EDIF 2.0 from the submenu -HILO-. After activating the push

button the system will display the following informations:

gen edif: Start Generation for CSA[16]

(header basiccells macrocells)

Done.

For small circuits as this example the generation of the exchange formats

is done immediately. If you load a larger design (e.g. 256 bit conditional

sum adder) this process will take more time and you can see the different

sections of the generation process being displayed in the message window.

For the EDIF format the created file is in the directory EDIFDIR. It has the

name CSA[16].edif, i.e. in the case of EDIF the square brackets and the

commas in the parameter list are not replaced by other characters.

Changing the View

With the help of the functions from the submenu -Views- you can change

the graphical representation of the schematic. The functions in the menu

of the netlist conversion tool are identically to those in the hierarchy menu.

For an explanation you can look at section 5.9.

To terminate the conversion menu you have to terminate any currently

active function first. In most cases this can be done by pressing the right

mouse button at most twice within the workarea (see also the description

of the appropriate function). After that you are in menu selection mode

Section 11.3 Design Conversion 253

and you can close the conversion menu by pressing the right mouse button

within the menuline. Now you return to the main menu of the CADIC

system. From there you can select another tool or you can terminate the

whole system call by selecting the entry Exit in the main menu.

254 Chapter 11. Design Conversion

12
Editor Reference

12.1 Basic Structures

In this section we use syntax diagrams to define the structure of user input as

for example schematic names, parameters of macro cells, width of wires etc.

We will show the corresponding syntax diagrams in the different sections.

There are some basic syntactical structures, on which these syntax diagrams

are based. We will describe these constructs in the following introduction.

The following basic symbols of the underlying programming language are

defined:

A ... Z, a ... z letter

0 1 2 3 4 5 6 7 8 9 digit

+ - * / ^ % arithmetical operators

< <= >= > == != compare operators

() brackets in expressions

[] brackets for parameter lists

, split symbol in parameter lists

@ introduction of a wire variable

The following standard functions are defined:

256 Chapter 12. Editor Reference

log logarithm to base 2

upper next larger integer

lower next smaller integer

sqrt square root

max maximum of two numbers

min minimum of two numbers

With these basic elements we define the following structures which are es-

sential for the syntax diagrams in the next few paragraphs.

digit

integer

Figure 12.1: Syntactical structure of an unsigned integer

The diagram in figure 12.1 specifies the structure of an unsigned integer.

From this diagram follows that an unsigned integer may be an arbitrary

sequence of digits, but on a real machine an integer n must be in the range

0 <= n <= 2147483648

identifier

letter

letter

digit

Figure 12.2: Syntactical structure of identifiers

A second important structure is the term identifier for which the diagram

Section 12.2 Schematics 257

is given in figure 12.2. An identifier may be an arbitrary sequence of letters

and digits preceeded by a letter. Theoretically an identifier may have any

length but in most cases the system will induce certain restrictions. For

example the length of a schematic name must not exceed 80 characters.

There are some other inputs where we have other restrictions to the length.

In the diagrams 12.1 and 12.2 the rounded elements represent elementary

objects. In the following syntax diagrams there will be elements specified

by rectangles. They represent objects which themselves are given by syntax

diagrams.

12.2 Schematics

12.2.1 Load Schematic

This menupoint is used to load an existing schematic as well as to create

a new one. If you select the entry Load from the -Schematics- submenu

a list window will popup in the workarea. This window contains the list

of schematics in the directory given by the environment variable DAGDIR.

The list is in alphabetical order and it contains one special entry at its top

which is called **** New ****. You must select this entry if you want to

create a new schematic sheet, as it is shown in figure 12.3.

After the window is popped up you are in the name selection mode. When

you move the pointer near to an entry in the schematic list it will be high-

lighted. You can notice that the colour of the schematic name changes from

white to black and now is displayed on the background of a white bar. Move

the pointer to the next entry in the list and you will notice the change of the

highlighted item. Of course you cannot watch this behaviour if you have

just started a new session of the editor where still no schematics have been

created. In this case the only entry in the list is **** New ****.

The size of the list window is fixed, i.e. it does not depend on the number

of items in DAGDIR. If there are more schematics in DAGDIR than can be

displayed in the list window you can scroll the list up and down. You can

258 Chapter 12. Editor Reference

Figure 12.3: List window for schematic names in DAGDIR with selected entry

**** New ****

scroll up the list by pressing the middle mouse button in the lower half

of the list window. Note that you can repeatedly scroll up and the list

window will be empty if you have scrolled beyond the bottom of the list

. In the same way you can scroll down when you press the middle mouse

button within the upper half of the list window until you reach the top of

the list. The editor keeps the current scroll position in mind, so that further

schematic selections are based on the same list offset. If you do not see the

**** New **** entry the list is scrolled up, move the pointer in the upper

half of the window and press the middle mouse button repeatedly until the

entry appears in the window.

If you select the entry **** New **** an input window is popped up in the

workarea with the following prompt (c.f. figure 12.4)

Please enter new Schematic Name: < >

The pointer has automatically been moved into this window and you can

type in the name for a new schematic to be created. The distance between

Section 12.2 Schematics 259

the angle brackets < > indicates the possible length of a schematic name.

This name must not be longer than 80 characters and the input routine

does not allow you to type in more than this number.

Figure 12.4: Input window for the specification of a new schematic name

When you type in a schematic name you have to follow the syntactical rules,

i.e. not every arbitrary sequence of characters is a correct schematic name.

The following diagram in figure 12.5 shows the syntax of schematic names.

schematic name

identifier [identifier

integer

]

,

Figure 12.5: Syntax diagram for schematic names

A schematic name is given by an identifier and an optional list of param-

eters. This list of parameters may contain identifiers as well as integers.

The diagram implies that you may use an infinite list of parameters, but in

the editor you may only use up to 32 parameters. The parameters of the

type identifier are called free, because they may be substituted by any non

negative natural number. The other parameters are called fixed. All free

parameters of a schematic may be used to create expressions for parame-

terized macro cells or the width of wires. This will be explained in detail in

section 12.3.1.

Some examples for legal schematic names are the following:

260 Chapter 12. Editor Reference

CSADDER[n]

SEL[1]

NGrid[n,d1,d2,d3]

Matrix[rows,columns]

Illegal schematic names are the following:

SHUFFLE[n parameter list not closed

1CUT[k] name is not an identifier

Matrix[-1,0] first parameter is not a non negative integer

NGrid[,d1,d2] parameter list must not begin with a comma

CSA[n/2] parameter must not be an arithmetical expression

If you type in a schematic name and press the return key the name will be

analyzed by a parser. In the case that the name is syntactically not correct

the system will display an error message in the message window below the

workarea:

! Error ! New Name "SHUFFLE[n" is syntactical incorrect

The input window will popup again, so that you can retry to enter the

schematic name. If you made a mistake and do not want to enter a schematic

name, you can cancel the input routine by simply pressing the return key

to the empty input window.

If the name of the schematic is syntactically correct, the system will check,

whether the new name is a redefinition of an existing schematic. You must

not define two general equations with the same schematic identifier. If you

have already defined a schematic CSA[n], you are not allowed to define a

second general equation of the form CSA[k]. In this case the system will

respond with the error message

! Error ! New Name "CSA[k]" is Redefinition of CSA[n]

If you want to redefine a schematic with new parameters, you have to delete

all conflicting schematics .; 12.2.5

If there is no conflict with other schematic definitions, the input window

will disappear and the system will display the message

Section 12.2 Schematics 261

New Schematic "CSA[n]" opened

in the message window below the workarea. Note: If you have selected

the entry **** New **** from the schematic list, but typed in the name

of an existing schematic, the corresponding drawing will be shown in the

workarea (you not really opened a new schematic in this case).

The name of the schematic is displayed in the upper right corner of the

graphical surface in one of the panels of the environment window. In the

workarea you will see an empty white frame which represents the border

of the schematic. Within this frame you have to place all elements of the

schematic like macros, basic cells, wires etc.

12.2.2 Save Schematic

If you select the entry Save from the -Schematics- submenu the current

schematic is saved to a file in the directory given by the environment variable

DAGDIR. The file is named

<schematicname>.dag

The file contains the elements needed for the graphical representation of the

schematic. These are position, orientation and names of the basic cells and

macros, the wires, the comment texts and the additional equations. Each

schematic is represented by a graph data structure, i.e. the borders of the

schematic or the macros as well as the wires are the edges of this graph. The

corners of the schematic and the cells, the wire points and the connections

of wires to the cells and the border of the schematic are the nodes of this

graph.

After the schematic has been saved to DAGDIR a macro cell will be generated,

if the schematic has no or only fixed parameters. Such a macro is called

a discrete macro, because its elements do not depend on any free parame-

ters. The discrete macros can be selected as cells (menu entry Enter from

-Cells- submenu) from the second cell list window.

262 Chapter 12. Editor Reference

Note: you need not to create schematics only with the editor. You can

write programs yourself to create correct files in DAGDIR. This can be done

by using the functions from the basic library for the graph data structure.

12.2.3 Save Schematic under New Name

You can save the current schematic under a new name with the entry Save

As from the -Schematics- submenu. After selecting this point the input

window will popup and you can type in a new name for the current schematic

at the following prompt:

Please enter new Schematic-Name:< >

For the new schematic name you have to consider the syntactical rules

defined by diagram 12.5 from section 12.2.1. If you have typed in a name; 12.2.1

which is not syntactically correct, the input window will popup again and

in the message window you can read a message like

! Error ! New Name "SHUFFLE[n" is syntactically incorrect

You can enter a new name for the schematic or abort the save function by

pressing the return key to an empty input window.

When the schematic is saved to DAGDIR a macro cell with the name of the; 12.2.2

new schematic will be generated in the case of discrete macros.

12.2.4 Clear Schematic

With the help of the function Clear from the -Schematics- submenu you

can erase all elements (macros, wires, comments and equations) within a

schematic. It clears your workarea and leaves the empty schematic frame.

If you have made mistakes during the drawing this function is a fast method

to erase all elements.

This function gives an alternative method to create a new schematic. You

can load an existing schematic, clear it and save it under a new name. The

you have to load the newly created schematic in order not to overwrite the

currently loaded schematic.

Section 12.3 Cells and Macros 263

Note: there is no security check, when you call this function. If you called

this function and did not want to clear the schematic, just load the schematic

again without saving it. The old drawing will be restored.

12.2.5 Delete Schematic

With the function Delete from the -Schematic- submenu you can delete a

schematic file in DAGDIR. After the selection of this entry the schematic list

window will popup and you can select the name of a schematic. Note that

the **** New **** entry does not appear in the list and the order of the

schematic names is shifted by one to the left. If you press the left mouse

button the current highlighted schematic is deleted. For the corresponding

file in DAGDIR the command

> rm -f <schematicname>.dag

is executed. The deletion of the file can be noticed in the change of the

schematic list where the name of the just deleted schematic will disappear.

Then you can select another schematic for deletion or you can abort the

function by pressing the right mouse button within the list window.

Note: be careful with this function. In the current implementation there

is no security check which asks you, whether you really want to delete the

schematic.

12.3 Cells and Macros

12.3.1 Enter Cells

With the function Enter from the -Cells- submenu you can select cells and

macros and place them within the schematic frame. The cells are divided

into the following three groups according to their functionality:

2 Basic cells are elementary components which compute basic opera-

tions. The user can create a basic cell library with the help of a cell

editor tool. With this editor it is very easy to make a cell library of

264 Chapter 12. Editor Reference

Figure 12.6: Cell selection windows for basic cells, discrete and parameter-

ized macros

commercial design systems available for the CADIC system. Within

the current distribution of the CADIC system there are some basic cell

libraries of commercial design system contained.

2 Discrete macro cells are components which are defined by the graph-

ical input of a corresponding schematic. Discrete means that this

macro does not depend on free parameters, i.e. the schematic name

only contains integer parameters or it has no parameter at all. With

the use of such a macro the designer creates a new hierarchy level in

the design specification. The wires connected to the border of this

schematic will appear as the pins of the graphical macro representa-

tion.

2 Parameterized macro cells are components, which depend on different

parameters of the current schematic. These macros can be used espe-

Section 12.3 Cells and Macros 265

cially within recursive specifications, where you use an instance of the

currently specified schematic. Parameterized macro cells can be com-

pared with forward declarations known from programming languages.

Each of these cell groups is displayed in a separate window which is popped

up upon the workarea (c.f. figure 12.6). The windows are arranged accord-

ing to the listing above. In the upmost window the names of the available

cells from the basic cell library are displayed, the second window contains

the names of the defined discrete macro cells and in the third window the

parameterized macro cells are listed, which have been defined during the

current editor session.

If you move the pointer into one of the three windows near to the name of

a cell or macro, the corresponding entry will be highlighted. Now you can

select this item by pressing the left mouse button. After this a graphical

representation of the cell or macro is displayed within the workarea. This

representation depends on the type of the cell.

input pin

power supply pin

output pin

pin name

pin connector

pin direction

Figure 12.7: Graphical representation of an and gate with two inputs se-

lected from the basic cell library

Figure 12.7 shows the typical layout of a basic cell. The displayed informa-

tion is called the interface of the cell. It contains the size of the cell, the

names and positions and directions of its pins. As shown in figure 12.7 we

distinguish between signal and power supply pins. During an editor ses-

266 Chapter 12. Editor Reference

sion normallay only the signal pins are used and connected to wires. The

power supply pins are left open, because the supply nets will be generated

automatically by an appropriate tool (c.f. chapter 8).

pin at the northern border
with name n[1,1]

third pin at the southern border,
name is s[2,2] because the con-
nected wire has width 1

Figure 12.8: Graphical representation of a discrete macro cell in the case of

a 1 bit conditional sum adder

The graphical representation of a discrete macro cell will be derived from

the corresponding schematic. When the schematic is saved an entry in the; 12.2.2

discrete macro list will be generated. The position of the pins is given by

the relative positions of the connections of the corresponding wires with the

border of the schematic. The pin names are generated automatically. They

consist of the side of the schematic to which the pin belongs and an interval

which describes the position and the width of the pin. The width of the pin

is given by the difference between the upper and lower bound of the interval

plus one. The order of the intervals is from left to right at the northern and

the southern border and from top to bottom at the western and eastern

border of the macro. The order of the intervals is important in the case of

rotations of the macro. Examples for pin names are the following:

Section 12.3 Cells and Macros 267

n[0,0] first pin at the northern border of a macro, the con-

nected wire has the width 1
e[3,4] this pin represents the connection of the fourth and fifth

wire at the eastern border, which are bundled in a single

wire of width 2
s[1,1] second pin at the southern border

w[0,2] first pin connector at the western border of the macro,

representing a bundle of width 3

In the graphical representation of a macro cell, the pin names are not dis-

played, only the pin connectors are shown. Macro cells normally have no

power supply pins, when they are selected from the macro library. Power

supply pins are generated by invoking an appropriate tool (c.f. chapter 8).

The third group of cells you can use are parameterized macros, which depend

on the free parameters of the schematic. For these macros in general there

exists no definition from a basic library or a schematic input. That is why its

size and the position of its pins are unknown when it is selected. Therefore

it is displayed as a rectangle of default size which has no pin connectors first.

Pins are created when you connect wires to the border of the macro which is; 12.4.1

treated like the border of the schematic. The size of a parameterized macro

can be changed after it is placed within the workarea in order to create a; 12.3.3

more intuitive representation of the schematic.

parameterized macro name

identifier [expression]

,

Figure 12.9: Syntax of parameterized macro names

268 Chapter 12. Editor Reference

To select a new parameterized macro, move the pointer into the third cell list

window near to the entry --- New Cell --- and press the left mouse but-

ton if it is highlighted. The input window will popup and you are prompted

to enter a new name for a parameterized macro cell:

Please enter Parameterized Name: < >

Now you can type in the name of a new parameterized macro cell. As shown

above for the names of schematics there are syntactical rules which must be

considered when selecting the name. The diagram in figure 12.9 shows the

basic structure of a parameterized name.

expression

term termcompare

Figure 12.10: An expression consists of a single term or the comparison

between two terms

The diagram in figure 12.10 defines that the name of a parameterized macro

consists of an identifier followed by an optional list of parameters, separated

by commas. Each parameter is given by a construct named expression which

will be refined in the following. The diagram implies that a macro may have

an infinite number of parameters, but as for schematic names, there is the

limitation to a maximum of 32 parameters.

Each parameter of the type expression is defined by the following diagrams.

We use the hierarchical description known from programming languages in

order to describe the priorities between the available operators. In a first

step an expression is refined according to the diagram in figure 12.10, where

we use a construct named term. An expression may be a single term, or it

may be the comparison of two terms. As shown in section 12.1 a comparison

Section 12.3 Cells and Macros 269

term

factor factor

Figure 12.11: Syntactical structure of term which is the additive combina-

tion of two factors

operator may be one of < <= >= > == !=. The comparison between two

terms is evaluated to zero or one, if it is false or true.

The parts of an expression are described by the construct term, for which

the syntax diagram is given in figure 12.11. A term represents a single factor

or the combination of two factors with the use of an additive operator (+

or -). We have chosen this representation to express the higher priority of

the elements in factor with regard to addition and subtraction.

A factor is defined by the syntax diagram in figure 12.12. It combines two

objects of the type unit by using a multiplicative operator like multiplication

(*), division (/), power (^) and division modulo (%). The use of a new object

of type unit introduces a new priority level for this construct.

The object with the highest priority is called unit. Its syntactical structure

is given by the diagram in figure 12.13. Beside the call of a standard function

as they are listed in section 12.1 a unit can be an identifier or an unsigned; 12.1

integer. In the diagram any identifier is allowed but within a schematic you

may only use the identifiers which appear as parameters in the schematic

name.

Legal names for parameterized macros are the following:

270 Chapter 12. Editor Reference

factor

term term^

*

/

%

Figure 12.12: Syntactical structure of factor which is the multiplicative

combination of two units

CSA[n/2]

SEL[upper(k/2)]

GChannel[n,min(n-2^i,2^i),i<(log(n)-1)]

After the selection of a cell from one of the three cell list windows, the

corresponding graphical representation of the cell type is shown within the

workarea. The cell follows the movement of the pointer in order to choose

the position where you want to place it. During the motion you may notice

that the cell changes its colour from red to grey. This indicates that you

have selected an illegal position for the placement.

Illegal positions are overlappings of the current cell with other cells, with

the border of the schematic or with wires. If the cell is on an illegal position

you can not place it by pressing the left mouse button. This will have no

effect and the cell will still be movable with the pointer. If you no possibility

to place the cell you can abort placement mode by pressing the right mouse

button within the workarea.

If you have selected a legal position for the cell and dropped it or if you

aborted the cell placement mode, the three cell list windows are popped up

Section 12.3 Cells and Macros 271

unit

upper

lower

log

sqrt

max

min

(

(,)

)expression

expression expression

integer

identifier

Figure 12.13: Syntactical structure of an object of type unit

again in order to select another cell. You can abort this mode by pressing

the right mouse button within one of the three list windows. This operation

terminates the enter cell mode and you return to menu selection mode.

12.3.2 Move and Rotate Cells

With the function Move from the -Cells- submenu you can select placed

cells and macros within the workarea and move them to a new position

or change their orientation. If you select this entry from the menu and

move the pointer into the workarea you are in cell selection mode. This is

indicated by the nearest cell to the pointer being highlighted in blue. If you

press the left mouse button this cell will be selected.

Note: After the selection of a cell for movement or rotation, it is isolated

from its context within the schematic. The wires are no longer connected

to the cell. We recommend that you delete all wires, which are connected; 12.4.2

272 Chapter 12. Editor Reference

to the cell before you move it to a new position. But in most cases you will

select cells from the cell list windows, place them within the schematic and

change their positions or orientations before you enter the signal wires.

After the selection the instance is in cell placement mode and it can be

moved freely within the workarea as we have shown it above in section 12.3.1

when we entered a new cell. The movable cell changes its colour, if you; 12.3.1

select an illegal position, where it intersects another cell, the border of

the schematic or a wire. It is impossible to place it at an illegal position,

the left mouse button has no effect in this case. If the cell is at a legal

position, you can fix it there by pressing the left mouse button. You also

can abort placement mode by pressing the right mouse button. In this the

case the movable cell is returned to its old position and cell selection mode

is activated again in order to select another cell for movement operation.

Figure 12.14: Sequence of possible orientations of a basic cell

With the help of this menu entry you can not only select cells and move

them to a new position, you also can change their orientation. After the

selection of a cell it is in placement mode. During the movement you can

select a new orientation for it by pressing the middle mouse button several

times. Each button press event changes the orientation of the cell to one of

the eight possible representations shown in figure 12.14.

Section 12.3 Cells and Macros 273

The current orientation is indicated by a suffix in the cell name. The de-

scription of these suffixes is given in figure 12.14. It is not a part of the

cell name. You can notice this, when you rename a cell, which is not in; 12.3.5

normal orientation. In this case the cell with the new name has the same

orientation as before and keeps its suffix.

If you have chosen the desired orientation, you can move the cell to a new

location and fix it there by pressing the left mouse button. If you do not

want to change the orientation of the selected cell, you can abort the oper-

ation by pressing the right mouse button. In this case the cell is moved to

its original position and orientation. You are in cell selection mode and you

can choose another cell for movement or rotation.

You can terminate this operation by pressing the right mouse button within

the workarea, if you are in cell selection mode. If you are in cell placement

mode, i.e. a cell is following the motion of the pointer, you must abort this

first (right mouse button).

12.3.3 Resize Cells

With the function Resize from the -Cells- submenu you can select placed

cells or macros within the schematic and change their sizes. In most cases

this function is used to resize parameterized macros, for which the system

selects the default size. Changing the size of these macros is useful for cre-

ating an intuitive representation of a schematic. You can select appropriate

sizes for the macros in order to indicate their different priorities.

If you activate the resize operation in the menu, you are in cell selection

mode. Move the pointer into the workarea and choose the cell which you

want to resize (nearest cell to the pointer is highlighted in blue) by pressing

the left mouse button.

Now you are in resize mode which is indicated by a rubberbanding frame

following the motion of the pointer. This frame is connected at the upper

left corner of the selected cell. Its opposite corner is at the position of the

pointer indicating the new size of the cell. You can confirm the current size

274 Chapter 12. Editor Reference

by pressing the left mouse button or you can abort the resize mode with

the right mouse button.

If you have selected a new size for the macro, it is displayed now according

to your selection. The resized macro is now in the cell placement mode

and you have to choose a new position for it. This is necessary because the

resizing of the macro could lead to overlappings with other cells, wires or

the schematic border. Move the cell to a legal position (illegal positions are

indicated by a change of the colour of the cell from red to grey) and place it

there by pressing the left mouse button. If you abort cell placement mode,

the cell is returned to its old position and its original size is restored.

After that you are in the cell selection mode again and can choose another

cell for resize operation or you can terminate the resize operation by pressing

the right mouse button within the workarea.

Note: As in the case of moving and rotating cell we recommend that you

delete all wires, which are connected to the cell, before you select it for

resizing.

12.3.4 Copy Cells

With the function Copy from the -Cells- submenu you can create a copy

of an already placed cell or macro. This function is very useful, if you have

changed the attributes of a cell (size or orientation) and you need a new cell

with the same attributes. Without this function you would have to enter

a new macro from the cell list windows, place it within the schematic and

change the attributes.

This function is very similar to the move operation from section 12.3.2. If; 12.3.2

you have activated the copy operation, you are in cell selection mode and

can choose the macro, from which you want to create a copy.

After the selection with the left mouse button, a second instance of this cell

is created. Then you are in the cell placement mode and can move the new

macro to the desired position (confirm it by pressing the left mouse button).

You can abort cell placement mode with the right mouse button. In this

Section 12.3 Cells and Macros 275

case the newly created cell will disappear.

After that you are in cell selection mode again and you can select another

cell to be copied. If you do not want to copy more macros, you can abort

this function by pressing the right mouse button within the workarea.

12.3.5 Rename Cells

With the function Rename from the -Cells- submenu you can change the

names of macros. This function is useful, if you have made a copy of an in-

stance and you want to change its parameters. The size and the orientation

are not modified by this operation.

If you activate this function, you are in cell selection mode in order to choose

the cell, for which you want to change the name. Move the pointer near to

the desired macro and press the left mouse button to select it.

Note: this function is only applicable with macros, not with basic cells. If

the currently highlighted instance is a basic cell, pressing the left mouse

button has no effect. You will remain in cell selection mode. You can not

simply exchange the names of basic cells, because they have a fixed interface

which is given by the descriptions in the selected library. This information

is global to all users of this library.

After the selection of a macro cell, the input window will popup and ask

you for the new name of the macro:

Please enter New Instance Name:< >

Type in the new macro name and confirm your input by pressing the return

key. Note that you have to consider the syntactical rules for macro names as

they are described in section 12.1 and 12.3.1. If you typed in a syntactically; 12.1,12.3.1

wrong name, the name of the selected macro will not be changed and an

error message is displayed in the message window:

! Error ! "SHUFFLE[n" is illegal Instance-Name

In this case the input window will popup again, and you can correct your

276 Chapter 12. Editor Reference

input. If you do not want to change the name of the selected macro any

longer, you can cancel the input window by pressing the return key to an

empty input line.

If your input is correct, the name of the selected macro is changed in this

way. In both cases (cancelling the input window or choosing a correct name)

the input window is popped down and you return to cell selection mode in

order to select another macro, for which you want to change the name.

You can abort this mode and thereby abort the whole rename function by

pressing the right mouse button within the workarea.

12.3.6 Delete Cells

With the function Delete from the -Cells- submenu you can erase cells

and macros from the current schematic. After activating this function you

are in cell selection mode. Move the pointer into the workarea near to

the cell you want to delete and press the left mouse button, when it is

highlighted.

Note: only the cell or macro is deleted. The connected wires remain in

the schematic. If you do not need them, call the function Delete from the

-Wires- submenu .; 12.4.2

After the deletion of a cell you are in cell selection mode in order to delete

more cells. You can abort this mode and the delete function by pressing

the right mouse button within the workarea.

Note: the function is automatically terminated, if you have deleted the last

cell in the schematic. Therefore you can not activate this function, if there

is no cell or macro in your schematic.

Section 12.4 Wires 277

12.4 Wires

12.4.1 Enter Wires

With the function Enter from the -Wires- submenu you can draw wires

in order to connect cells and macros. Wires are build up of sequences of

horizontal and vertical edges. The graphical representation of a wire may

represent a bundle of single parallel wires. The number of these single wires

is described by the width of the graphical wire. Concerning the width the

wires can be clssified into three groups:

2 wires with constant width

2 wires with arithmetical expressions over the schematic parameters

2 wires with formal variables

For the use of these wire types we define the following rules:

2 at the pin connectors of basic cells and discrete macros you may only

connect wires with a constant width. In the case of basic cells the

width is always 1.

2 at the borders of parameterized macro cells and the schematic you

may connect wires with a width of all three types.

If the width of the wire is not equal to 1, it is displayed beside a small slash

at the middle of the wire. The following figure 12.15 shows wires of all three

types.

The enter wire function has to perform the following tasks

2 selection of the start and end point of the wire

2 determination of the wire width

2 interactive error handling

If you activate the enter wire function, you first have to select the start point

for a wire. If you move the pointer into the workarea you notice a crosshair

cursor following the pointer motion. Because of the high resolution of the

278 Chapter 12. Editor Reference

Figure 12.15: Wires with different widths

screen it is difficult for the user to select exactly a certain pixel position.

Therefore the crosshair cursor not only specifies a pixel position, but it

covers a region of pixels. If you move it near to a special position within

the schematic, it will snap to that position. You can notice this behaviour,

if you move the pointer slowly near to one of the following special points

2 point on a wire (but not its start or end point)

2 start or end point of a wire

2 pin connector

2 point on schematic or parameterized macro border

If the cursor is near to any of these points, the system will choose the

coordinates of it. If this is not the case the position is the center of the

cursor. The special points have increasing priority in the given order, i.e. a

pin connector has higher priority than a point on a wire.

You can fix the start point of the wire by pressing the left mouse button.

After that you can move the pointer to the end point of the wire. During the

motion of the pointer you will notice a rubberbanding line connecting the

start point with the current pointer position. The shape of this line indicates

the wires which will be inserted, if you fix the end point. In some cases this

Section 12.4 Wires 279

line will disappear. This indicates that you have chosen a connection of two

points, which is impossible by insertion of at most two wires (e.g. one wire

would intersect a cell). Note that the line will also disappear, if you connect

two wires with different widths.

If you have chosen a legal connection (the rubberbanding line is visible),

you can fix the end point by pressing the left mouse button again. If you do

this for an illegal connection, the selected end point will become the start

point for a new connection, i.e. the rubberbanding line will now be drawn

from the expected end point to the current pointer position. You also can

abort the selection of the end point by pressing the right mouse button and

return to the selection of a new start point.

If you have drawn a legal connection between two wire points, the rubber-

banding line will disappear and the system will now determine the width of

this wire. In some cases this can be automatically derived from the points

you have connected:

2 if one of the wire points is a pin connector of a basic cell, the wire gets

the width 1.

2 if one of the wire points is a pin connector of a discrete macro cell,

the wire gets the width of this pin.

2 if one of the points is located on a wire, the new wire gets the same

width as this wire.

In the other cases the system can not automatically determine the width of

the new wire. Then the input window is popped up and you have to specify

the wire width to the following prompt:

Please enter Wire Width:< >

For the selection of the wire width you have to consider the following syn-

tactical rules. As mentioned earlier the width of a wire may depend on the

free parameters of the schematic. It may be an arithmetical expression in

these parameters or it may be described by a wire variable. The diagram

in figure 12.16 shows the syntactical structure of a wire width.

280 Chapter 12. Editor Reference

wire width

expression variable*

Figure 12.16: Syntactical structure for the width of a wire

This diagram shows that the width of a wire may be a simple expression as

it is given by the diagrams in figure 12.10 to figure 12.13. But it also may

be a linear combination of variables which have expressions as coefficients.

The restriction to a linear combination is necessary, because we compute

the values of the wire variables by solving an equation system.

The syntactical structure of a wire variable is given by the diagram in fig-

ure 12.17. A variable is introduced by the special character @ followed by a

construct which is similar to a parameterized macro name. Especially a wire

variable may depend on parameters which are given by expressions over the

schematic parameters. This allows you to specify flexible variables within

a recursive description, whereas a variable without parameters would have

the same value for all stages of the recursion.

The following inputs are legal wire widths:

Section 12.4 Wires 281

variable

identifier [expression]

,

@

Figure 12.17: Structure of a wire variable

5 constant value

n/2+1 arithmetical expression

@t constant wire variable

@s[n] variable depending on schematic parameter

@w[n>0,m==1] variable depending on comparisons

@s[n]+n*@t[n-1] linear combination of variables

The following inputs are illegal wire widths:

-1 width may not be negative

@s[@t[n]] illegal parameter

@s[n/2]*@t[n] not a linear combination of variables

0.5*@t[n-1] coefficients must be integers

If you enter a correct wire width and confirm this by pressing the return

key, the new connection is drawn as one or two yellow edges. If the width

is not equal to one, it is drawn as a label in the middle of each edge which

is longer than 50 pixels (for very small edges the width is not shown on the; 12.7.1

screen, but you can look at it, if you zoom in the schematic with the help

of the functions in section 12.7.1).

After the new wire is created, you can draw another connection. Here the

end point of the previous wire is taken as the start point for the next wire.

This enables you to draw a sequence of more than one wire segment. If you

do not want to use the end point of the previous wire as the start point

282 Chapter 12. Editor Reference

for the next wire, press the right mouse button once. Then the crosshair

at the end point and the rubberbanding line will disappear and you can

select a new start point for the next wire. Especially in some cases it is

impossible to use the end point of the previous wire as the new start point

(e.g. end point is located on the schematic border), then you will see no

rubberbanding line (indicating that there is no legal connection possible).

Then the next point selected will be the new start point of the next wire.

If you have entered an illegal wire width, the input window will popup again

and you can correct your input. If you press the return key to the empty

input window, the just created connection will be deleted.

You can terminate the enter wire function by pressing the right mouse

button within the workarea. Note that you have to press it twice, if you are

selecting the end point of a wire (rubberbanding line will follow the pointer

motion).

12.4.2 Delete Wires

With the function Delete from the -Wires- submenu you can erase wires

from the current schematic. After activating this function you are in the

wire selection mode. If you move the pointer into the workarea, the wire

nearest to the pointer position is highlighted (it changes its colour from

yellow to cyan). Now you can delete this wire by pressing the left mouse

button.

After the deletion of the wire you remain in wire selection mode in order to

delete more wires. This mode and the delete wire function can be aborted

by pressing the right mouse button within the workarea.

Note: the function is automatically terminated, when you have deleted the

last wire in the schematic. That is why you can not activate this function,

if there is no wire at all in your schematic.

Section 12.5 Comments 283

12.5 Comments

12.5.1 Enter Comments

With the function Enter from the -Comments- submenu you can insert

comment text into your schematic. If you activate this function, the input

window will popup with the following prompt:

Please enter Comment Text:< >

Now you can type a comment text which may contain every printable char-

acter. The maximum length of the text may not exceed 80 characters. If

you have to enter more text, you must split it in several comment lines.

If you confirm your input by pressing the return key, the text will appear

within the workarea. It is now movable with the pointer and can be placed

at any position in your schematic (inside cells or macros, across wires etc.).

Move the text to the desired position and drop it there by pressing the left

mouse button. You can abort the placement operation by pressing the right

mouse button (the comment text is deleted in this case).

After that the input window will popup again and you can type in another

comment text. If you do not want to place more comment texts you can

abort this function by pressing the return key to the empty input window.

12.5.2 Delete Comments

With the function Delete from the -Comments- submenu you can erase

placed comment text from your schematic. If you activate this function you

are in comment selection mode. If you move the pointer into the workarea,

the comment text nearest to the pointer position is highlighted (its colour

changes from white to cyan).

Now you can delete this comment by pressing the left mouse button. After

the deletion of a comment you return to comment selection mode in order

to delete more comments. You can abort this mode and the delete function

by pressing the right mouse button within the workarea.

284 Chapter 12. Editor Reference

Note: the function is automatically terminated, if you have deleted the last

comment in the schematic. Therefore you can not activate this function, if

there is no comment at all in your schematic.

12.6 Equations

12.6.1 Enter Equations

With the function Enter from the -Equations- submenu you can insert

additional equations about variables which are used for the description of

the width of bundles of wires . In some cases the equations automatically; 12.4.1

derived by the system are not sufficient to compute a unique solution. In

section 5 we describe, how the system generates equations about the wire

variables.

Entering an equation is very similar to entering a comment text. If you

activate this function, the input window is popped up with the following

prompt:

Please enter New Equation:< >

and you can type in an equation, for example

@a[n] = @b[n]

@s[n]+@t[n] = 2*@t[n-1]

@t[n] = 10

The syntactical structure of both sides of the equation is given by the dia-

gram in figure 12.16 .; 12.4.1

If your input is correct, the equation will appear in the workarea and is

movable with the pointer. Just as comment text you can place it anywhere

in your schematic and fix its position by pressing the left mouse button.

Note that equations are drawn in yellow, whereas comment text is displayed

in white.

If you typed in a syntactically incorrect equation the system will respond

with an appropriate error message in the message window:

Section 12.7 Views 285

!!!Error!!! Equation ... is syntactically incorrect

Then the input window will popup again in order to correct your input. If

you do not want to enter another equation, you can abort the function by

pressing the return key to the empty input window.

12.6.2 Delete Equations

With the function Delete from the -Equations- submenu you can erase

placed equations from your schematic. If you activate the function, you are

in equation selection mode. If you move the pointer into the workarea, the

equation nearest to the pointer is highlighted (it changes its colour from

yellow to cyan). Note that you can only select equations, i.e. comment text

will not be highlighted.

The highlighted equation can now be deleted by pressing the left mouse

button. After that you remain in equation selection mode in order to delete

more equations. You can abort this mode and the delete equation function

by pressing the right mouse button within the workarea.

Note: the function is automatically terminated, when you have deleted the

last equation in your schematic. That is why you can not activate it, if

there is no equation at all in your schematic.

12.7 Views

12.7.1 Zooming

With the functions Zoom In and Zoom Out from the -Views- submenu

you can select a viewport and change the graphical representation of your

schematic.

If you activate the function Zoom In you are in viewport selection mode.

Now move the pointer into the workarea and select a start point for a rect-

angular viewport. This need not be the upper left corner of the viewport,

according to the selection of the second point it will be interpreted appropri-

286 Chapter 12. Editor Reference

ately. After fixing the start point by pressing the left mouse button, move

the pointer to the position of the opposite corner of the desired viewport.

You notice a rubberbanding frame following the motion of the pointer. This

frame indicates the size of the selected viewport and implies the factors by

which the schematic will be scaled.

If you confirm the selection of the opposite corner by pressing the left mouse

button, the schematic will be scaled and redrawn. The upper left corner

of your selected viewport will be moved into the upper left corner of the

workarea. You remain in viewport selection mode for further zooming op-

erations. Each zooming operation is pushed onto a zooming stack, so that

we can return to any previously selected viewport. The currently active

viewport will be shown in the control window as a small yellow rectangle,

representing the position and the size of the viewport relative to the size of

the whole schematic.

The selection of the corners of a viewport can be aborted by pressing the

right mouse button. If you do this during the selection of the first corner,

the zooming function is terminated and you return to menu selection mode.

If you press the right mouse button during the selection of the opposite

corner, the start point is cancelled and you can select a new first point of

the viewport.

The inverse function Zoom Out can be used to restore the viewport on the

top of the zooming stack. This function has no effect, if the zooming stack

is empty. If you want to restore the original size of the schematic, you can

directly call the function Normal which clears the zooming stack in one step.

12.7.2 Scaling

With the function +10%, -10%, +50% and -50% from the -Views- submenu

you can change the size of the schematic without moving its upper left corner

to a new position. The scaling factors are 1.1, 0.9, 1.5 and 0.5 respectively.

After calling these functions for several times you can return to the original

size of the schematic with the help of the function Normal.

Section 12.8 Miscellaneous 287

12.8 Miscellaneous

With the function All Objs from the -Views- submenu you get a repre-

sentation of your schematic which will intuitively show the relation to the

underlying mathematical calculus. The graphical represenation resembles

an equation, where the left side is the macro representation of the cur-

rent schematic and the right side is the schematic itself. This denotes that

the macro is refined (refinement operator is indicated by an arrow) by the

drawing of the schematic.

We do not recommend to use this representation during the input of the

schematic, because the frame is scaled down, so that there is not enough

space for comfortable input operations. You can return from this represen-

tation to the normal mode, if you call the functions Normal and Home. The

call of Normal will restore the original size of the schematic and Home will

move its upper left corner into the upper left corner of the workarea.

The function Redraw can be used to refresh the drawing of the schematic

within the workarea. This function is useful, if there remains some dirt from

entering and deleting objects as macros, wires or comments. Some functions

automatically do a redraw operation, so that you do not have to call it very

often.

The function Inverse changes the background colour of the workarea from

black to white. It also changes the colours of macros, wires, comments

and equations appropriately. This is useful, if you want to make screen-

dumps from the graphical editor as we did it during the design example in

section 4.8.

To terminate the editor session you have to terminate any currently active

editor function first. In most cases this can be done by pressing the right

mouse button at most twice within the workarea (see also the description

of the appropriate function). After that you are in menu selection mode

and you can finish your editor session by pressing the right mouse button

within the menuline. Now the editor menu will be closed and you return to

the main menu of the CADIC system. From there you can select another

288 Chapter 12. Editor Reference

tool or you can terminate the whole system call by selecting the entry Exit

in the main menu.

Bibliography

[Bar78] M. Barbacci et.al. The Symbolic Manipulation of Computer

Descriptions. Technical report, Dept. of Computer Science,

Carnegie–Mellon University, 1978.

[Biw94] M. Biwersi. µsic – ein kleiner Silicon-Compiler. Master’s thesis,

Fachbereich Informatik, Universität des Saarlandes, Postfach 15

11 50, 66041 Saarbrücken, FRG, 1994.

[Bur94] Th. Burch. Eine graphische Arbeitsumgebung für den

parametrisierten Entwurf integrierter Schaltkreise. PhD thesis,

Fachbereich Informatik, Universität des Saarlandes, 1994.

[CAD92] CADENCE. Cadence Design System Manual, 1992.

[CF86] E. Clarke and Y. Feng. ESCHER – A Geometrical Layout Sys-

tem for Recursively Defined Circuits. In Proceedings of the 23rd

Design Automation Conference, pages 649–653, June 1986.

[CNR87] H.A. Choi, K. Nakajima, and C.S. Rim. Complexity Results

for vertex–deletion Graph Bipartization and Via Minimization

Problems. In Proceedings of the 25th Annual Allerton Conference

on Computing, Communication and Control, September 1987.

[Com87] EDIF Steering Committee. EDIF Electronic Design Interchange

Format Version 2 0 0. Electronic Industries Association, Wash-

ington D.C., May 1987.

290 Chapter 12. Editor Reference

[DBR+88] P. J. Drongowski, J. R. Bammi, R. Ramaswamy, S. Iyengar,

and T. H. Wang. A Graphical Hardware Design Language. In

Proceedings of the 25th Design Automation Conference, pages

108–115, 1988.

[Fet95] Th. Fettig. Lokale Plazierung in CADIC. Master’s thesis, Fach-

bereich Informatik, Universität des Saarlandes, 1995. to appear.

[Gen90] GenRad. HILO Reference Manual, 1990.

[GL85] S. M. German and K. J. Lieberherr. Zeus: A Language for Ex-

pressing Algorithms in Hardware. IEEE Transactions on Com-

puter Aided Design, pages 55–65, Februar 1985.

[Gra92] B. Grande. Verfahren zur hierarchischen Schichtzuweisung und

ihre Implementierung in CADIC. Master’s thesis, Fachbereich

Informatik, Universität des Saarlandes, 1992.

[HMZ91] G. Hotz, P. Molitor, and W. Zimmer. On the Construction of

Very Large Integer Multipliers. In Proceedings of EURO ASIC

91, pages 266–269, May 1991.

[Hot65] G. Hotz. Eine Algebraisierung des Syntheseproblems für

Schaltkreise. EIK Journal of Information Processing and Cy-

bernetics, 1:185–205,209–231, 1965.

[Hot74] G. Hotz. Schaltkreistheorie. de Gruyter Lehrbuch. Walter de

Gruyter Verlag, 1974.

[KCS88] Y.S. Kuo, T.C. Chern, and W. Shih. Fast Algorithm for Optimal

Layer Assignment. In Proceedings of the 25th Design Automation

Conference (DAC88), pages 554–559, June 1988.

[KMO89] R. Kolla, P. Molitor, and H. G. Osthof. Einführung in den

VLSI–Entwurf. Leitfäden und Monographien der Informatik.

B.G. Teubner Verlag, Stuttgart, 1989.

[Knu73] D.E. Knuth. Sorting and Searching, The Art of Computer Pro-

gramming. Addison–Wesley, 1973.

Section 12.8 Miscellaneous 291

[Kol86] R. Kolla. Spezifikation und Expansion logisch topologischer

Netze. PhD thesis, Fachbereich Informatik, Universität des Saar-

landes, 1986.

[Lim82] W. Y.-P. Lim. HISDL – A Structure Description Language.

Comm. ACM, Vol. 25:823–830, November 1982.

[LSU89] R. Lipsett, C. Schaefer, and C. Ussery. VHDL: Hardware De-

scription and Design. Kluwer Academic Publishers, 1989. 300

Seiten.

[LV83] W.K. Luk and J. Vuillemin. Recursive Implementation of Op-

timal Time VLSI Integer Multipliers. In Proceedings of IFIP

Congress 83, pages 155–168, 1983.

[MN89] K. Mehlhorn and S. Näher. LEDA a Library of Efficient Data

Types and Algorithms. Technical Report TR–A 04/1989, FB

10, Universität des Saarlandes, 1989.

[Mol86] P. Molitor. Über die Bikategorie der logisch topologischen Netze

und ihre Semantik. PhD thesis, Fachbereich Informatik, Uni-

versität des Saarlandes, Postfach 15 11 50, 66041 Saarbrücken,

FRG, 1986.

[Mol87] P. Molitor. On the Contact Minimization Problem. In Pro-

ceedings of the 4th Annual Symposium on Theoretical Aspects of

Computer Science (STACS87), pages 420–431, February 1987.

[Mol93] P. Molitor. A Hierarchy Preserving Hierarchical Bottom-up 2-

Layer Wiring Algorithm with respect to Via Minimization. IN-

TEGRATION, the VLSI Journal, 15:73–95, 1993.

[Sch92] J. Schnabel. Generierung der Stromversorgung in CADIC. Mas-

ter’s thesis, Fachbereich Informatik, Universität des Saarlandes,

1992.

[Sch96] Ch. Scholl. Logiksynthese unter Ausnutzung funktionaler Eigen-

schaften. PhD thesis, Fachbereich Informatik, Universität des

292 Chapter 12. Editor Reference

Saarlandes, Postfach 15 11 50, 66041 Saarbrücken, FRG, 1996.

to appear.

[Sha82] M. Shadad et.al. VHSIC Hardware Description Language. IEEE

Transactions on Computer Aided Design, Vol. 18, Februar 1982.

[Skl60] J. Sklansky. Conditional-sum addition logic. IRE-EC, 9:226–231,

1960.

[SSC82] J. M. Siskind, J. R. Southard, and K. W Crouch. Generating

Custom High Performance VLSI Designs from Succinct Algo-

rithmic Descriptions. In Proc. Conf. on Advanced Research in

VLSI, pages 28–40, Januar 1982.

[SYS90] TANGENT SYSTEMS. Tangate Reference Manual, 1990.

[Wal64] C.S. Wallace. A Suggestion for a Fast Multiplier. IEEE Trans-

actions on Computers, 13:14–17, 1964.

[Wan95] G. Wannemacher. Generierung eines symbolischen Layouts in

CADIC. Master’s thesis, Fachbereich Informatik, Universität

des Saarlandes, Postfach 15 11 50, 66041 Saarbrücken, FRG,

1995. to appear.

[Wir82] N. Wirth. Hades: A Notation for the Description of Hardware.

Technical report, ETH Zentrum Zurich, August 1982.

Index

!=, 269

(180), 86

(90->), 86

(<\>), 86

(<-90), 86

(<-90<\>), 86

(<-90^\v), 86

(^\v), 86

*, 269

+, 269

-, 269

/, 269

<=, 269

<, 269

==, 269

>=, 269

CELLDIR, 20

DAGDIR, 20, 257

EDIFDIR, 21

HILODIR, 21

MACROLIB, 21

NBSDIR, 21

PARLIB, 21

PWRDIR, 21

SIMDIR, 21, 157, 163

SLICEDIR, 21

Schematic Editor

exit, 107

TECHDIR, 20

VENUSDIR, 21

^, 269

basic cell, 263

basic topographical net, 202

bicategorial expression, 30

bifunctor, 31

BTG, 202

cell

copy, 52, 64, 274

delete, 276

enter, 263

basic, 36, 72, 263

discrete macro, 264

parameterized, 47, 49, 61,

265

flip, 85, 271

move, 271

orientation, 272

293

294 INDEX

placement mode, 52, 53, 63, 65

rename, 79, 275

resize, 51, 63, 273

rotate, 85, 271

selection mode, 53, 64

Cgraph, 112

edge information, 148

node information, 145

node types, 147

scan, 146

channel, 202

comment

delete, 98, 283

enter, 70, 283

conditional sum adder, 58

control area, 23

DAG, 5, 109

best matching, 122

building, 113

hierarchy check, 136

hierarchy error, 137

logarithmic size, 122

structure check, 136

trace down, 141

trace up, 143

tracing path, 143

traversal, 112

treenode, 110

visualization, 133

data size, 116

design environment, 6

design tools, 6

directed acyclic graph, 109

discrete macros, 264

divider, 232

EDIF, 25

environment area, 23

equation

delete, 285

enter, 105, 284

functional behaviour, 155

geometrical layout, 201

hardware description language (see

also HDL), 25

HDL, 25

EDIF, 25

VHDL, 25

Zeus, 25

hierarchical transition, 111

instance, 110

integrated tools, 6

layer assignment, 173

bus via, 176

dual graph, 175

dual mode, 180

multi layer wires, 183

problems, 174

refining wires, 183

remove vias, 186

via minimization, 175

wiring, 176

layers, 173

layout, 201

INDEX 295

area protocol, 205, 209

graphical expansion, 206, 211

PostScript output, 215

tracing, 212

views, 213

logic simulation, 155

logic topographical net, 28

horizontal composition, 28

vertical composition, 28

logic topological net, 29

main menu, 23

merging circuit, 219

message area, 23

mode

cell selection, 51, 62

modification time, 115

multiplier, 227

navigation, 6, 144

net equation, 30

net variable, 30

best matching, 122

odd even mergesort, 217

parameter

setting value, 118

parameter syntax, 268

parameterized macros, 265

pattern file, 168

place&route, 201

power supply, 190

sizing, 192

topology, 190

PROTDIR, 209

redundant representation, 233

river routing, 202

schematic

clear, 262

delete, 263

list, 257

name, 259

new, 35, 49, 59, 257

open, 96, 257

redefinition, 260

save, 57, 71, 261

save as, 97, 262

Schematic Editor

start, 34

shuffle circuit, 91, 221

simulation

display mode, 166

next pattern, 171

pattern file, 168

pattern list, 168

prepare design, 157

single pattern, 159, 164

sorting circuit, 217

specification

parameterized, 3

recursive, 4

specification methods, 25

standard functions

log, 256

lower, 256

max, 256

296 INDEX

min, 256

sqrt, 256

upper, 256

treenode, 110

VHDL, 25

views, 110

scaling, 152, 286

zoom in, 150, 285

zoom out, 151, 286

visualization, 6

Wallace tree multiplier, 26

wire

delete, 98, 282

enter, 54, 66, 277

parameterized, 55

pin connection, 39, 43, 74

projection, 70

variable, 68

equation, 105

width, 54, 68, 277

wire variables, 124

advantages, 132

basic equations, 127

deriving equations, 125

display equations, 129

display variables, 131

equation system, 124

generic descriptions, 132

illegal solution, 128

reusable structures, 133

work area, 22

X–Window System, 17

