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Abstract

AFLs are normalforms for knot representations based on projections of the
knot on a plane H, which can be decomposed intwo simple curves L, A as in-
troduced by K. F. Gauss. We decompose A in a sequence a := (1, Za, ..., Zp,)
of segments, which can be considered as projections of arcs of an arcade with
arcs in the upper half space H" and arcs in the lower half space H . We may
assume that the x; are alternating projejctions from H+ and H~. « plays the
role of a ccordinate system to describe L by a word over an alphabet, which
represents, in which direction L crosses the arc projections. The pairs (o, L)
are the AF Ls we use as normalforms for the knot projections. An AFL is
reduced, when it cannot be simplified by applications of Reidemeister-moves
of type R1 and R2. To each AF'L there exists up to isomorhpy only one
reduced normalform.

The transformations of knot projections into AF' Ls are sequences of moves
of loops, which are segmnts of L, along simple prefix segments of the actual
string L onto the actual arcade. For this moves exist many strategies. We
use only two of them »' and 2, which are uniguely determined by its be-
havior relativ to any pair (s;,t;) of arcs the move of the loop passes through
respectiv over. After each such move we reduce the patially given AF'L by
R1- and R2-moves.

The discussion of these moves is guided by the following idea: Let K be
a knotprojection and K' generated by the application of a Reidemeister-
move on K. If v := (vy,14,...15,) is a sequence of moves of the strategies
v' v? transformig K into a reduced AFL (a, L), then there exists a se-
quence V' := (v], V4, ...,vy) transforming K’ into a AFL (o/, L") isomorphic
to (o, L).

This idea needs an extension of the strategies to work. In some cases after
the move of type v of the loop and the reduction we have to do a redraw
of the loop out of the arcade and to apply a move of type v # v on this
configuration. On this base we are able to realize the idea.

This construction defines a nondeterministic algorithm to decide the equiv-
alence problem of knots. The number of arcs which may be generated by
these constructions is bounded by 2P, p the number of crossing points of K.
So we are able to decide the equivalence of two knot projections K, K’ in
time 20(maz{p,p'})

We use the description of the AFLs by words of a formal language, but
this description is not essential for the construction. A translation of the
constructions into a formal system would make it unreadable.



1 Inroduction

1.1 The Idea and Definitions

For an introduction in knot theory see [4],[3]. The author has discussed in
[5] and [6] a class of knot representations which had been suggested to him
by Kurt Reidemeister [1]. These representations are based on a remark of
K.F. Gauss [2] that each knot has projections on the plane which can be
decomposed in two strings without intersecting itself. Figure 1 shows as an
example the projection of a trefoil knot and a decomposition of the projection
in two simple segments defined by the points A, B. Reidemeister handeled
both strings in an unsymmetrical manner. One of the strings called faden L
remains in the plan, the other one he moves into the R® forming an arcade
« with arcs alternating on the upper- and the lower side of the plane. The
theory becomes simpler if we use projections on the 2 — sphere, the surface
S of a ball and build the arcade on S.

We may assume that the projection of the arcade forms a straight line
on S. The projections of the upper arcs we will represent by red lines the
projections of the arcs under the plane by blue lines. We assume the knot
to be oriented and the orientation transferred to the projection. The pro-
jections of the sequence of arcs are numbered and oriented corresponding to
the orientation of the knot. The i-th arc of the arcade gets the name s; if it
is the projection of an upper arc and the name ¢; in the other case. We may
assume that the sequence of the projections of the arcs of the arcade alter-
nates in its color. An arcade therefore can be considered as an alternating
finite sequence «

517t2783)t47'“ or t1)827t37847'“

ending with a red arcade s, or a blue arcade t,. The pairs («, L) are the
arcade-string-configurations (Arkaden-Faden-Lagen) introduced as knot
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Figure 1 Figure 2
representations by Reidemeister [5]. Figure 2 shows such a representation of




the knot 4, [3] p.363. For shortness we call the arcade-string-configurations
AFL. We assign to each AFL (a, L) a signature

0o(L) := i v xi) % - xair for wx; € {s,t} and ¢ € {+1,—-1}

79 in
which is defined as follows: Let
P17P27"'7Pn

the sequence of the crossing-points of L with the arcade « in the order they
appear on L relative to the orientation of the knot. The alphabet element
z;, belongs to the point F;. If P, is crossing-point of L with a red arc of «,

then we define x = s else x = ¢ and we define ¢; := k if the arc is the k-th
element in the enumeration of the arcs of o. We define ¢ := 1 iff L crosses
xp, from left to right else ¢, := —1 relative to the knot orientation. For our

example Figure 2 we get relative to both of the possible orientations of the
knot

Oo(L) =t x 55" %13

The exponents of the variables are independent from the orientation of the
knot. Changing the orientation results in the reflection of the signature and
the numbering of the arcs. Turning the knot round the arcade as axis does
not change the signature up to the trivial isomorphism, which exchanges s
and t variables.

In [5],[6] it has been shown that reductions of the signature o(L) by applying
sequences of substitutions of the following rules (1),...,(4) generate words,
which not in each case represent AF Ls but always projections of the same
knot. But it is possible to apply the reduction rules in such orders that each
reduction step corresponds to an AF' L, which can be constructed from the
original AF'L by applying a sequence of the Reidemeister moves of type R1
and R2. Here we use that the arcade is build on S.

x§, k1, — 1 for =z € {st}, (1)

v, — 1 for iy =n, 2 —1 for i, =1, (2)

r; — xj_9 for i¢>0,7>i+1, and ;47 notin o(F), (3)
i—i—1 for i>1, 21 notin o(F) (4)

We use this rules to assign to each knot K a formal languages Lk over an
infinite alphabet X.

S:={s;:ieNee{-1,1}}, T:={t:ieNee{-1,1}}, X:=S5SUT.
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The languages have the special structure

Lc(S-T)Y U(T-S)*UT-(S-T)*U(S-T)"-8.

The operation - is the product, which concatenates the sequences of the free
monoid X*. To each knot K belongs an infinite set of knot projections K
and to each projection normalization to AFLs (ak, Fi), which we describe
uniquely by their signature o,(Fk). We choose special normalization algo-
rithms and define for each oriented knot projection K of the not orientd knot

K relative to the chosen class of normalizations the language

Lk := {0a(L) : (o, L) is a normalization of a projection K

Two knots K, K’ are equal iff Ly = Lk
holds. This means that the word problem
of these languages is equivalent to the knot
problem.

We define two special types v' and v? of
moves of points of K on the arcades. The
normalization v are sequences of such moves.
We prove that to each Reidemeister-move
K — K' and normalization v of K there
exists a normalization v/ of K’ such that
the resulting AF'Ls can be transformed into
each other by Reidemeister-moves of type R1
and R2. This means that the correspond-
ing signatures may be reduced on the same
short-word. The reductions are achieved by
R1- and 2-moves corresponding to the rules
(1),...,(4). The proof needs the assumption
that the Reidemeister move transforming IC
into K" does not concern parts of the arcade.

1

1.2 Examples

Example 1 - see Figure 3 - shows the reduc-
tion of an AF' L representing a trefoil. We see
the elementary relation between the Reide-
meister moves R1 and R2 and the reduction
rules applied on the signatures

-1 -1 -3 -1
01 = Sp 't2'83 't4'81, 02:t2'83 't4, ngtl'
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Example 2 - Figure 4 - shows the re-
duction of an AF L representing a cir-

cle. The Reidemeister moves of type
R1 and R2 in the graphics correspond m
to the following reduction steps of the =)
related signatures. @
or = sy tpesyosyety /_\
m
R ~—

gy = 81—1'752'151 m

o3 = sy ctacty v

Fig re4

Oy — 1
2 Reductions

2.1 The Reduction of the Signatures

It is well known from the theory of free groups that the application of the
reductions (1)

viox;t—1 and a7'om;—1

is commutative. In other words the result of reducing a word w relative to
this rules completely to a word @ is independent from the order the rules
will be applied. This remains true if we add the reduction rules (2): If the
first of the rules (2) can be applied to w, then w has the form

W=z W —w
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If a production of (1) can be applied on w then it holds
w:wl.xn.xfn.wZ

If wy # 1 then we can write wy = z{ - w| and have as results for the two
possible reductions

w=ax-wy-x]-x; " wy — xf - W) we — wi - wy

n n

_ € / n - / —-n !
W= Wy T Ty W ——> W T Ty W —— Wy W

If w; = 1 then the correspond reductions have the form

w=2x] ] wy —> We

w=2a] T, wy —> T, Wy —> Wo

We see that the resulting short words under reductions of type {(1),(2)} are
independent from the order we apply the reduction rules.

We now discuss the the complete reduction system {(1),(2),(3),(4)}. The
rules (3) and (4) identify some variables and in connection with this produce
a shift in the variable names. It is clear that each production, which could be
applied before an application of a rule from (3),(4) can be applied afterwards
too in some cases with shifted variables. But after an application of rules
from (3),(4) there may be more reductions applicable on base of the variable
identifications. On base of our statement about the unique short-wort under
the application of the rules from (1),(2) we see that we get an uniquely
determined short-word, if we before each application of a rule from (3),(4)
reduce the word relative to (1),(2) completely and reduce the result of the
last application of a rule from (3),(4) relative to (1),(2) completely. From this
it follows together with the observation that each reduction applicable before
a variable identification can be applied after this application with a shifted
rule it follows that for each word w there exists one and only on short-word.
So we have

Lemma 1 For each word w € Ly there exists exactly one short-word. The
short-word w of w can be constructed in linear time relative to the length |w|
of w.



2.2 The Reduction of the AFL

Let (o, L) be an AFL and w := 0,(L) the signature of L relative to the
arcade «. It is obvious that each Reidemeister move R2 of the string L, which
removes two crossing-points with the arc «; of the arcade «, corresponds to
a reduction of the signature of the type

W=wy T T; Wy — Wy - Wy

But not to each such decomposition of the signature corresponds a Reide-
meister move R2, which removes the related crossing-points of the AF'L.
There exist AF Ls with the signature w that has a decomposition

—1 —1
. .wS.xl.xl .w4,

w=a] w -zt wy g x;

which corresponds to a situation as described by Figure 5.

Figure 5
Because each AF'L has only a finite number of crossing-points to each pair
x§ - x; ¢, which appears in the signature, there exists a segment a of L, that
crosses the arc o; in two Points P;, P, which are neighbors on L but not
necessarily on «;. The same difficulty concerns the segment that corresponds
to the prefix z7 of the signature. But because the string L and the arcade
are simple curves there exist in these cases other segments b of the string L
with pairs P/, Py of crossing-points, which are neighbors on L and situated
on the arcade between P, P,. By iterating this argument we find in each
case a segment ¢ of L with crossing-points, which are neighbors on «; and
on c¢. This means that there exists a sequence of reductions of the signature
which corresponds to a sequence of Reidemeister moves of type R1 and R2,
which removes the corresponding crossing-points. From this it follows [6] the

Theorem 1 To each AFL («, L) with the signature w := o,(L) there ezists
a AFL (o/,L") and the signature w' := o, (L") such that it holds: w — w’,
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w' is reduced and («, L) can be transformed by a sequence of Reidemeister
moves of type R1 and R2 and arc reductions applied on (o, L) into (o'.L").

2.3 Tapes Round Middle Lines

We assume an arcade « being given on the sphere S beginning in point A
and ending in point B. C' and D are points on S different from A, B. M is
a simple oriented curve from C' to D. We define the signature o, (M) as we
did it for the strings of the AF'Ls. ¢ and d are line segments, ¢ bisected by
C and d by D (Fig. 6.1) M; and M, are oriented simple curves such that
the configuration describes a tape with sides M; and M, and M as middle

line. We may consider the tape generated by a move of ¢ along M into d.
Observation 1: If none of the end-

points of the arcs of « lies on the tape

and ¢, d do'nt intersect o then it holds D
o(My) = o(M) = o(M,). A B
Observation 2: FEach Reidemeister M1 M2

move R2, which can be applied to re-

duce the signature o,(M) can be ap-
plied to the tape if it is thin enough. | R2-mo es
Observation 3: The example (Fig. E
6.2) proves that in general it is not true
that it follows from U

ga(M) = 1 Figure 6.1

that there exists a sequence of moves R2 to move M with fixed A and B into
a line without any intersection with . But if M is a segment of the string
L of an AFL (o, L), then there exists a neighborhood M’ of M on L such
that this is true for M’. (Fig. 6.3) This follows from Theorem 1.

> )
yaul (r—md
’* Ue ol B/

Figure 6.2

We discuss now tapes along middle lines M ending in the starting point A
of the arcade as described in (Fig 6.3). The starting point of M is C'. We

8



assume the tape being generated by R3 moves, which move a crossing point
E generated by a R1 move on M. Let M’ be the curve generated from M
by applying first the R1 move and then the sequence of R3 moves shifting
the loop along M as indicated in (Fig. 6.3). We get for the signatures

Oo(M') = 0o(M) - 25 - 0o(M) - 00(M) = 00(M) - 2§ — 04(M).

S SN0

\n A1 R2 R1

- —
— — —
— | — —

A

A A
/
J

Fig re 6.3

We see in Fig.6.3 that M’ can be reduced by R2 moves and one R1 move in
point A to the original segment M.

We are now interested in the signature of the border line M* of a tape with
M' as middle line as described in Fig. 6.4. The green line describes this
border line. We assume that the green line under crosses the segment M. It
is important to note that shifting the loop along M we always pass the arcs
in the same color as M does.

The colored space shows how the green line can be reduced by R2 moves to a
curve, with the same signature as the line would have after a corresponding
move along M.

N7 lr— N
— I

—
/
1/
. >, L
q ) \.|./
\_ ) R2-mo es R2 and R1
— —
Figure 6.4
0a(M*) = (0a(M)-25-0o(M _1)



The last step in this reduction is based on the reduction of o by removing
the arc belonging to x;. By reducing M’ to M we are able to reduce o' to
the original arcade a: by removing the arc x;. So after the reduction we get
the same signatures for M and the green tape along M.

From example Fig. 6.3 we see that there exist configurations, which make
it necessary that the move of the loop along the middle line passes all arcs
with the same color as the middle line does. We will speak in this connection
about long moves of type v' .

But we can not restrict these moves to this strategy, because there are ex-
amples, as see in Fig. 6.5,

—=T 21
A

—

|
N

T
{
\L
s

kL

' )\

—_—

Figure 6.5
that make it necessary to mowe the loop in a mazximal distance from the
middle line such that the color always is the same as in the final step moving
over A. Figure 6.6 describes an example, which is a variant of Fig. 6.4.

r ™

Figure 6.6
The figures differ in the way the green curve passes the arcs of the arcade.
Indeed we have not the same arcade, but a transformed version. In a small
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neighborhood of each crossing point of the green line we color the arcade blue
if it was red there. This means that we transform the arcade o by introducing
new blue and red arcs such that the green loop the arcade always passes over
blue arcs. We see that in this configuration the reduction to the original
configuration is possible too (Fig. 6.6).

We generalize this observation. Let o be an arcade and M := (C, A) a simple
string. Let N be a simple loop, which is the border of a tape II generated
by moving a circle with its middle point on M from C to A. We assume the
radius of the circle so small that II crosses the arcade exactly in the same
arcs as M it does and that the tape does not overlap itself. Then we are able
to assign to each crossing point P of M with the arcade two crossing points
Q@ and Q' of N such that there does’nt exist another crossing point of N and
the arcade between Q and )'. Now we transform the arcade « as follows:
Let 7 the color of the arc x;, then we successively substitute each arc x; with
color of x; unequal v and crossing point P by 5 new arcs, two with color vy
and @) respective (' as center point and no other crossing points in it and
the three arcs of the original color covering the rest of the original arc x;. If
this process has been applied onto the neighborhood of each crossing point
P with color unequal 7 we have constructed the arcade o'.

Lemma 2 Let be N; and N, the two segments of N corresponding to M.
We assume that there is given a sequence of R2-moves applied on M and
reductions applied on « transforming M into the simple string M* := (C, A)
and reducing a to an arcade «* such that oq«(M*) is a reduced word. Then
it follows that there exists a sequence of R2-moves of M, Ny and Ny in a
sequence of simple strings and a sequence of arcade reductions of o' into a
tape with M* as middle line and Ny, Nox as border and an arcade ot such
that

Ot (M™), 0o+ (NY), a0+ (N3)
are reduced words.

Proof: From the assumption it follows, that there exists a sequence of R2-
moves of M, which transforms («, M) into a reduced system («*, M*) keeping
C fixed. We may restrict our discussion to one R2-move of the tape. To a
R2-move of M belong two crossing points Py, P, of an arc z; with a segment
of M. The two segments f on M and g on x; between this points on « and
M are simple strings which together form the border of two open subsets of
the surface S of the ball. One of these two sets does’nt contain any parts of
a and M. We call this region F' (Fig.6.7). There exist two segments fi, fo
parallel to f on N; and Ny. We may assume that f; lies in F' with end points
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@1 and Q); on g. There are two possibilities: N; over crosses ¢ in ()7 and
(2 or it under crosses in both points. We may restrict to the case that the
behavior of N; in these points differ from that of M. This means that the
colors of the arcs of o and « differ in this case. We assume the color of f in
a to be red and the color of the arcs around ); and () are blue.

i

Figure 6.7

Because there are no crossing points on ¢ between )7 and ) we my reduce
the red arc of o’ between the two blue arcs on f. Then we by a R2-move
may reduce N; such that f; is moved out of F'. Now we may reduce the blue
arc between ()1 and Q> and after this may apply a R2-move to M to reduce
f. Now we reduce again the arcade by substituting the red arcade by a blue
one and are able to reduce N, by moving f; over the blue arc. Finally we
now we color the blue arc red and may apply the next induction step. From
this the lemma follows.

Corollary 1 Let M = My - My a decomposition of M into two segments
M, and My and N; = N;1 - N; o the corresponding decompositions of Ny and
Ns. If there exists a R2-reduction of M, which reduces My to a segment
without crossing points with the arcade, then this holds for the corresponding
reductions of N; and its decompositions too.
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2.4 Reduced Signatures of the Trefoil Knot

Figure 7 represents three AF'Ls of the trefoil knot as easily to be seen.
This means that we are able to transform the first representation by Rei-

demeister moves into into the second one.

Ua(L) = Slt;183 (5)
O/ (LI) = t281t2_1t2_183t2 (6)

and after the transformation for the new
AFL (o/, L") the signature (6). We see that
both signatures are reduced and that they
are different. But if we choose an other seg-
ment of the second knot projection for build-
ing up the AFL (o*, L*) as shown in the last
example of figure 7 we get for the signature

Ooe (L¥) = 5115 ' s357 's3lsys7 s
o 12 9391 93 2191 23

— 31t51338f1 — 51t§133

the original reduced signature. The green
segment indicates the move, which has to be
done in the normalization process.

The idea behind this paper is to prove that
this special case can be generalized in the
sense that the normalization process to con-
struct an AF'L from a knot projection can
be defined such that in each knot projection
there exists a segment to build up the ar-
cade such that the reduced signatures of both
AF Ls, the signature of the original one and
the signature of the AF'L generated by Rei-
demeister moves, are equal.

We find before the moves (5)

a0

s2 t3
A \ ) B
s
s3
s3

9

e N

Figure 7

3 Invariance Properties of the Signatures

In the subsection 2.4 we presented examples of different AFLs («, L) and
(o/, L*) representing the same knot but having signatures o, (L) and o, (L),
which reduces to different words w respective w’. In this section we will
discuss invariance properties of the reduced signatures.
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3.1 Reidemeister Moves on the Surface of the Ball

It is obvious that there exists a sequence of Reidemeister moves to transform
the projections of two knots on the surface S of the ball in each other iff the
two knots are equivalent. But a stronger property holds on S:

Let K and K' to projections of the same knot and a a segment of K
without any crossing points of K. Then there exists a sequence seq :=
(1, pi2, -, pii—1) of Reidemeister moves moving K into a projection K* iso-
morphic to K’, such that none of the moves of seq touches a. This means
that none of the moves of seq moves any parts of a, and it will not move over
segments of K or its successors K; during the transformation process under
or over a. We call such move sequences a-normal. We define

K1 =K and Ki+1 = Mz(Kz) for i= ]_, . k—1.

If K and K' are projections of the same knot, then there exists such a se-
quence with K* = K} isomorphic to K'. We use the segment a to construct
on base of K; AFL («;, L;) representing the knot. Then we will prove that for
each of our transformations of K; into an AF L there exists such a transfor-
mation of K, into an AF' L such that the two reduced AF Ls are isomorphic.
The difficulty is the fact that we need the transformation applied on K; to
construct the corresponding transformation for K, ;. So we have to guess
the right one or to construct all transformations, which have to be consid-
ered. We considere two different strategies v*, % extended by a redrawing
feature. Locally it is not to see which one we should apply. Therefore in
the case that a concrete move sequence is not available, we have to use all
the possible strategies. The construction of a AF'L for given (K, a) we call
a-normalization. Applying the possible normalization on each pair (K, a),
a an allowed segment of K we get sets of reduced words W (K, a) for (K, a).
Two knot projections K, K’ are equivalent iff it holds

UW (K.a) JW (K a) 0 )

The size of the set of allowed segments a of K is bounded by 3xp—4, if p is the
number of crossing points of K. The number of the possible normalization
is exponential in the number of crossing points of K. But each case can be
done effectively. The reduced forms of the signatures are computable and are

uniquely determined. This means that the equivalence problem for knots is
decidable.
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3.2 The Normalization

Let K be an oriented knot projection and a a segment without any crossing
points on K and A as start and B as end point. Let be P;, P, ..., P, the set
of crossing points of K in the order the points appear the first time if we
walk from A to B against the orientation of the knot. We define the process
of normalization by induction.

Definition 1 If the set of crossing points is empty nothing is to do. In the
other case there exists a simple segment seg, := (Py, A) oriented as K and
a segment c; crossing seqy in Py which does not cross the knot in any other
point. We move ¢y in a loop with seg, and a prefiz of a as middle line such
that the final loop never touches K beside in the new crossing point P{ on a.
If ¢y 1s under crossing in Py then we color a red in the other case blue. The
loop together with ¢, defines the tape tape;.

Assume the points Py, ..., P;, i < n beeing moved onto a and it resulted in the
knot projection K;.1, an arcade a;i1 on a and in the simple segment seg;
from Py to A on K;.1. We define the move i + 1 as follows: We choose a
small segment c; 11 crossing seg;+1 in P11 and not touching K, any where
else. We move c¢;y1 along seg;y1 as middle line such that the loop does not
touch K;y besides of crossings of arcs of a; 1 and end the move after having
reached an inner point P}, | of the first arc of ai 1. If ¢;41 was under-grossing
and the first arc has the color red, then we don’t modify the first arcade. In
the other case we construct a new red and a blue arc from the old red arc.
This we do such that P, lies on the blue arc and the old crossing points of
the red arc keep their color. If c;yq is over crossing then we proceed as before
only changing the role of blue and red.

The construction is not yet uniquily defined. We have to define how the loop
behaves crossing arcs. We use two different strategies v' and v?:
Definition of v': We demand that the loop loopy,, is always riding on the
segment and never jumping over an arc or moving over a point, in which
arcs of different color met. We define as tape tape; 1 the region with the loop
and c;11 as border and seg;y1 as middle line. This means for the signature
Oasyy (loopl ) = w - af - w™ ¢ with w := 04, (seg;) if the color of the first arc
does not change under the move. In the over case we get w by a variable
shift from o4, (loop;).

Definition of v*: The projection of the loop loop},, generated by v is the
same as of the loop loop}, , generated by v'. The difference between these
moves is as follows: The color of the variables in oq,,, (loop?,,) is for all the
same. This means that we have to construct new arcs in the case that loop*
crosses arcs of a color different from x;.

Definition forv: seg;,1 := seg;-loop;y1. The sequencev := (1", vy, ..., v),
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n number of crossing points of the knot projection K we define as the nor-
malization process belonging to (K, a).

The definition describes a set of sequences of normalization moves. In each
such sequence the tape;, is packed in tape;. because the loops of index i may
be used as parts of the middle line of moves with index 7 > ¢ the normal-
ization process may generate configurations with an exponentially growing
complexity.

The normlisation v generates up to isomorphisms uniquely an AF'L

(o, L) :=v(K, L)

from a given knot projection K and a simple crossing point free segment a
of K. In the next sections we will prove, that for a-normal Reidemeister
moves 4 of (K,a) and an a-normalization v of K there always exists an
a-normalization ¢ such that the following invariance diagram holds

1
(K,a) — (K',a)
vl N
(a, L) (!, L")
ol lo
oo(L) — w <+ ou(L)
Y o

w := p(w') describes the result of the total reduction of w'.

3.3 The R1 and R2 Invariance

In section 2.3 we discussed the following situation in a normalization process:
A simple segment seg with the endpoints (C,A) constructed by a partial
normalization has been changed by a R1-move into the segment seg’, with a
crossing point (Fig. 6.3). The following normalization step transforms this
segment into a simple segment seg*. This segment will become a prefix of L’
of the AF'L, which the normalization generates from the transformed knot
projection. We have seen that this segment may be reduced by R2 and R1
moves relative to the arcs of the current arcade into seg. We proved that
the tapes generated by the following normalization step may be reduced by
R2-moves in each other too (Fig. 6.4). From this it follows the same result
for the following normalization steps as far as it concerns the loop of the part
of the tape with seg™. The later normalization steps may use loops of tapes
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as middle lines, which were deformed in consequence of our R1 move. We
noticed that the loop of the normalization step just after the construction of
seg® can be reduced by R2-moves to their original middle line. Observation
1 in section 1.5 inductively applied states that the the string L’ of the AF'L
(o/, L") can be reduced by R2-moves and one R1-move to L. Essential is that
the move along the segment onto the arcade never jumps over an arc in the
over crossing case an never jumps under an arc in the under crossing case.
New arcs by this process are only generated if the first arc is red and the
moved loop is over crossing or if the first arc is blue an the loop is under
crossing. It follows

Lemma 3 Let K be a knot projection and a a segment of K free of crossing
points. If a is an arcade generated by an a-normalization of K then the
reduced signature o,(L) remains invariant under a-normal R1 moves of K.

We now come to the discussion of the invariance of signatures under the
R2-move. We have to consider configurations as described by the left parts
of the two diagrams of Fig. 8. We assume that the knot projection K is
partially normalized an that the actual state of this process is represented in
the abstract diagrams of Fig.8. A subsegment the segment b’ of K has been
moved by the R2-move represented by the green tape tape; under crossing
the segment b, which is free of crossing points and generated by the partial
normalization. The following normalization step ;1 can be described by two
sequences v!' respective v? of R3-moves along b. This moves may be consid-
ered as a sequence of R3-moves of tape;. The result is the tape tape, with
green colored border in the right parts of Fig. 8. tapes; under and over crosses
the arcs, in the figure 8 represented symbolically by

:) L
[0 L= nlllf
) J

Figure 8
parts of a red and a blue arc, in the same manner as b does. Because the
arcade in the diagram is beginning with a blue arc and tape; is under crossing
we have to substitute the first arc ¢; of the arcade by two arcs s1,, and to

il
||15dU
fr_—HD

o 1

3
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shift the indices of the following arcs by 1. Tape tapes; is now under crossing
the arc s;. The segments, which crossed t; before this normalization step are
now crossing to. We see that the border loop of tapes; can be reduced by a
sequence of R2 moves relative to the arcs, such that we get the configuration
before that application of y. From subsection 1.5 it follows that this holds
too for all the tapes with this middle line, which by the normalization process
after the considered configuration will be generated. Inductively this follows
for all segments, which are new in consequence of p. So it follows

Lemma 4 Let a be a segment of the knot K without any crossing points and
(a, L) the arcade generated by an a-normalization v of K. If K' has been
generated by a a-normal R2-move and (o', L") by an suitable chosen extension
V' of v from K' then the reduced signatures of both AF Ls are equal.

We summarize: Let K and K' projections of a knot, which can be trans-
formed in each other by a sequence of R1- and R2-moves and a a simple
crossing point free segment of K, then there exists a sequence of a-normal
R1- and R2-moves, which transform K into a knot projection K* isomorphic
to K'. The sets of the a-normalization of K and K* construct sets of AF Ls,
which define sets of reduced signatures W (K, a) and W (K*,a). The relation
W(K,a) NW(K*,a) # () is an invariant under R1- and R2-moves. Because
K’ and K are isomorph it follows that we are able to find a simple crossing
free segment o’ of K’ such that the relation W(K',a') = W(K*,a) holds. If
we define

W(K) == W(K, a) (8)

then we see that W(K) N W(K') # () holds if K and K’ are (R1, R2)-

equivalent.

3.4 The R3 Invariance

We first notice that we have not to discuss the R3-moves in the general form
because we are able to reduce it to a special move, which we call R’3-move.

\
R'3 ) —r R3 l "
-
'd '
J
R'3 RZ& ) R'3
-
A Y

Fig re9
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It is explained by the upper left part of Figure 9. The right part of this figure
shows the equivalence of the R3-move and the R’3-move modulo a R2-move.
The lower left part of Figure 9 states the equivalence of applying the R’3-
move to the left or the right vertical line. To prove the invariance of the
signature under R’3-moves we have to discuss the four possible start configu-
rations for the R’3-moves as explained by Fig. 10. This figure describes four
configurations (a),(b),(c) and (d) of segments us, us, uy, in the order of the
orientation of the knot and the first arc of the arcade . A is the endpoint
of u; and the start point of a.

3 2

2 3

A A A A
(@) (b) (© (d)

Fig re 10

We first state that the configurations of the cases (a) and (b) relative to the
R’3-move are equivalent. Fig. 11.a.

3 3 2 2
— —
2 2 3 3
1

1 1 1
(@)-mo e (b)-mo e
Identit j (8)-mo e
3
2 2
A N
3 L
1
1 t oR2-mo es
Figure 11.a
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We have to compair the results of normalization applied before the R’3-move
with the result after it. As first step in this direction we prove the equivalence
of (a) and (b). A (a)-move means a R’3-move concerning the confiuration
(a) and the meaning of (b)-,(c)- and (d)-move is analogue Fig. 11.a and 11.b.
The diagram in figure 11a proves, that the (a)- and (b)-moves are equivalent
modulo R2-moves. This proof can be applied to prove the equivalence of the
cases of (c¢) and (d) with the configurations we get by reflection of it on a
vertical line. We now prove that the cases (c) and (d) are equivalent to (a)
modulo R2-moves. We do this explicitly only for the case (c) because the
proof for (d) can be based analogously on the case (b), which is equivalent
to (a) modulo R2-moves.

3 3
| — j \_ )
2 o 2 N 2
R2 (a)
—— —_—
R'3
1 1 | 1
A A A

Figure 11.b
The proof is completely represented by the diagrams of Fig. 11.b. In the
next step we consider the refinement of these cases by considering the over
and under crossing of the segments.

3.5 The Invariance under R’3-moves

In the discussion of case (a) we have to consider some sub cases concern-
ing over and under crossing of the different segments. We assume a knot
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projection K to be given and a normalization v of K, which transforms K
into a AFL (o, L). We assume the knot projection K’ to be generated by a
R’3-move applied on K and discuss the influence of this move on the rela-
tion between the AFLs (a, L) and the AFLs (o, L") generated by possible
variants of the normalization v and v/'.

3.5.1 Redrawing Loops

We will see that there are configurations of knot projections K and normal-
ization v of K onto an AFL (a, L) such that we are not able to choose a
normalization v/ of K' generated by a R’3-move applied on K such that the
generated AF'L (o, L) is equivalent to (o, L). In these cases we use a third
procedure to construct an AF'L (o/, L") such that it is equivalent to (a, L).
This procedure we call redrawing.

This proedure is defined as follows: After each normalization step concerning
the move of a segment of a crossing point in a loop on the arcade we reduce
the partially constructed arcade completely by applications of R1- and R2-
moves. After this process we allow the redrawing of the reduced loop such
tat it not more crosses arcs of the arcade. Now we move the loop again on
the arcade but using the complementary strategy of the normalization step
before. We will prove that we are able to construct by applying normalization
steps of the types !, »? and redrawing on K’ such that the resulting AFL
(o/, L") is equivalent to (a, L). For shortness we call this extended procedure
again normalization.

3.5.2 The Invariance in Case (a)

We represent u; by the black segment, uy by the color malt and us by the
color plum.

3 2 1 A \alpha

The Figure 12 represents the state of the normalization v after having moved
all the segments crossing u; between u, and A. The move of uy and us3 to the
arcade is done by the normalization steps 1, respective 4. It is represented
by the Diagram in the left part of Fig. 12. The upper left diagram represents
the R’3 move. We discuss three sub cases:
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(1) : malt > plum > black. We here assume the malt segment uy over
crosses the moved plum segment uz. The following R’3-move together with
(v) indicates the idea how to choose the normalization v’ on the plum loop.
The variables (z,y) in Fig. 12 have to be complemented by the number of
the diagrams, in which they appear, as indices. So we have to discuss the
normalization by considering the possible colors blue, red, which the variables
1, Y1, T2, Yo, 23, T3, Y3 may have as values depending from the type of the
moves v, 5. We try to organize the normalization v/ such that it can be
reduced to the original normalization . From the assumption that us and
uz over cross u; it follows that the loops of the moved segments uy, ug cross
the same blue arcs as u; it does. But the variables z,y; may be blue or
red depending from the normalization strategy we have chosen for u, and
uz. But we are not free to choose the colors for the variables x3 and y3
independently, because we assume malt over crosses plum. From x3 = red
it follows y3 = red. We are free in choosing the color of z3. We choose
color(z3) = color(ys) to be able to apply the R2-reductions p of diagram (3)
to (2). This means that we choose x := 3, y2 := y3. But the R2-move from
(2) to (1) is possible if and only if 1 = 23,y = y3 holds. So it follows

Lemma 5 Under the assumption that us and uz over cross uy and R’3 moves
us between uy and us it follows: To each normalization v of K onto the AF'L
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(o, L) there exists a a normalization v' of K’ onto a AFL (o', L") such that
(o/, L") can be transformed by a sequence of R2-moves into («, L), if the
relation

color(zy) = red — color(y;) = red

holds.

Now we have to discuss the case
color(xzy) =red and color(y;) = blue,

which is excluded by the assumption of the lemma.

M Pt
L IR
v/ WY

We choose in this case

color(ys) := color(z) := color(x3) := color(z)

and  color(xs) := color(yy) := color(zy).

Under this assumption all relations represented in Fig. 12 remain true be-
side of the relation R2 between the configurations (2) and (1). We insert
therefore an additional configuration (2a) between (1) and (2) (Fig. 13). We
redraw the plum loop from the arcade (2) and apply on this configuration
the normalization v as before the first R’3-move in figure 12. The result of
this operation is then isomorphic to the configuration (1) of figure 12.

(2) : plum > malt > black. We now relate in the discussion to Fig. 14.
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If the types of the normalization v, and v, are equal and if we choose the
types of the normalization after he R’3-move of the same type, then the
diagrams commute. Fig. 14 represents the case that the type of v, is v? and
the type of v, is v'. In this case we have to choose for the four normalization
concerning the two crossing points of malt and plum and the crossing points
of mult, plum with u; of the second diagram in the upper line of Fig. 14 the
type ' to be able to reduce the effect of the R’3-move on the normalization.
But the result is not the same as after the application of v onto the original
configuration. Therefore we redraw the plum loop and after this we apply
the normalization of type 2, which produces the same result as v did.

In the case type of v, equal 2 we are free to choose the types of the three
moves of the plum crossing points as we like it to get the desired result
without needing a redraw of a loop. Our result is symmetrical to the result
of the previous case. Relating to the variables introduced in Fig. 14 we have
proven the

Lemma 6 Under the assumption that us and us over crosses u; and R’3
moves uz over us it follows: To each normalization v of K onto the AFL
(o, L) there exists a normalization v' of K' onto (o', L") such that (o', L’)
can be transformed by a sequence of R2 moves into («, L), if the relation

color(xy) = blue —» color(zy) = blue
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holds. In the case color(zy) = blue and color(xzs) = red we need to achieve
this result a reduction after each normalization step and a redraw f the loop
and after this the normalization of type v? of this loop.

(3) : malt > black > plum The following discussion of this case is based
on Fig. 15. The names of the color variables introduced in this figure are to
be completed by the number of the diagrams in which the variables appear
as index. The color of the crossing points which are colored with blue or
red is determined by the assumption of this case. The color of the other
crossing points is determined uniquely by the color of the crossing points in
the position symmetrical relative to the black axes.

N S

— . R'3 R3‘ (

\n \n\ an 9
=~ —/ -~
) — ) ([
2 r :

R 1 ey @--'--

S 2)

—/

-/
—]

Figure 15

The values for the variables 1, y; are uniquely determined by the strategies
used in the normalization steps generating the malt and plum loop. So we
have to consider four cases and to show that we can choose the normalization
strategies after having applied the R’3 move such that the diagrams of figure
15 commute. We always set

color(xy) := color(xs) := color(xy)
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and
color(xy) := color(xy), color(ysz) := color(ys)

The value of y; we are free to choose and we set y; := y3. The value of
y3 can be chosen blue or red because plum is under crossing malt and the
normalization leading segment is the malt one and it over-crosses the blue
arcs. color(z) depends from color(z3).

Case color(z3) = red:  In this case we have to choose color(z}) := red. In
this case it follows that we can choose

color(xy) := color(xs) = color(xy)

and  color(y3) = color(yy)

This means that Diagram (3) of Fig. 15 can be reduced by R2-moves to (2)
of Fig. 15 and (2) to (1) by a R2 move. We see in this case there exists a
normalization of K’ to a reduced AFL (o, L"), which is isomorphic to the
reduced AF L generated by the given normalization v of K.

color(z1) = blue: In this case we are free to choose the colors for z} and y;
as we like. We set

color(xy) :=red and color(ys) := color(y;)
and we see that all the diagrams commute.

Lemma 7 Under the assumption that uz under crosses uy and us over crosses
uy there exists for each normalization v of K and each R’3 move of K into a
knot projection K' a normalization v’ of K' such that the reduced generated
AFLs are isomorphic.

Sub Cases: The three remaining subcases are symmetrical to the three
discussed sub cases. By reflection of the knot projections K and K’ and
of the related AF Ls on the projection plane the cases will be translated as
represented in the following pattern

malt > plum > black <— black > plum > malt,
plum > malt > black <— black > malt > plum,
malt > black > plum <— plum > black > malt.

It follows that the discussions of the the first free subcases can be formally
translated in the discussions of the three cases on the right side of the pattern.
We summerize the results of this subsection:
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Lemma 8 Under the assumption, that the segments us, us,uq of the knot
are configured as in the cases (a) and (b) of Fig. 10 the following holds: If
the knot projection K has been moved into the knot projection K' by a R’3-
move of uz over or between or under the cross point of us and u,, then there
exists to each normalization v of K onto an AFL («, L) a normalization v/
of K' extended by redrawing of loops onto an AFL (o', L"), such that the two
reduced AF Ls are isomorphic on the surface S of the ball.

4 The Complexity of the Equivalence Prob-
lem of Knots

We have seen that projections of equivalent knots on the surface S of a
ball can be moved into isomorphic projections by sequences of Reidemeister
moves, which do not touch a given crossing free segment a and a certain
neighborhood of it at all. We defined sequences of moves of crossing points
along crossing-free segments onto the arcade build on a. Part of this moves
are substitutions of arcs of the arcade by two or more new arcs.

We used two different strategies for this long moves: One strategy v! consists
in moving the loop always in contact with segment under over arcs as the
segment does. We spoke in this connection of riding on the line. The second
strategy v? moves the loop not between arc and line but jumps over the arc,
which makes it in most cases necessary to build new arcs. This strategy we
called distance move. Both strategies reduce the number of crossing points
lieing not on the arcade strict monotonously. If the knot projection has n
crossing points then there exist 2" many different sequences of normalization
of the knot projection onto a AFL. Each move of a Crossing point onto
the arcade generates a loop twice as long as the segment it has to move
along. Therefore the number of crossing points of the loops moved to the
arcade may crow exponentially but not faster. But this may over estimate
the crowing of the arcade, because a loop shifted to the arcade in most cases
will not pass all the over loops shifted before it. This means that the size of
the AF Ls we construct by this procedure from a knot with n crossing points
is exponentially bounded. So in the worst case we have to expect expontial
many AF'Ls of expontial size. This bound holds too if we bring in account
the extension of the normalization by the redrawing strategy. The size of
the arcades may be reduced considerably by reducing the patially generated
arcade after each normalisation step.

For knot projections I and X', which can be transformed by a Reidemeister
move in each other we proved the following result: There exists to each
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normalisation v of K a normalisation ¢/ of K’ such that the two reduced
AF Ls generated are isomorphic. This property is transitv. So it follows the

Theorem 2 The equivalence problem of two knot projections K1 and Ky
with ny respective ny crossing points is decidable in time O(2%*") with n :=
max{ny,ny}.

Using the definition (8) of W (K) we define for knots K

W(K) := N W(K) (9)

K a projection of K

From Lemma 8 it follows for all knots K

W(K)#0 and W(K) is finite

5 Concluding Remarks

1. The product o,(L) * o4 (L") of the signatures of two AF Ls is equal to a
signature o4 (L) of an AFL (&, L) representing the Schubert product of the
knots represented by (a, L) and (¢/,L'). The reductions (2) then translate
into a drilling of the AFL (&, L).

2. From the invariance of (9) under Reidemeister moves ist follows that
homomorphisms

¢: F(X)—G

from the free Group generated by X on groups G may be used to define knot
invariants. Every knot invariant should be definable on this base.

3. Probably we overestimated the complexity of the algorithm by far, because
knot projections with a number of crossing points much larger as that of a
projection with a minimal number of crossing points will be reduced during
the normalisation considrably and it seems not very likely that segments to
be moved by the normalisations are following in a order that the move of
the succesoor segment has to follow the loop of a predecessor frequently. So
one could guess, that the problem to compute a small hull of W (K) is only
seldom exponentially large relative to the minimal number of crossing points
of a projection of K.

If we are only interested in weaker invariants as ¢(W (K)) then during the
normalisation stronger reductions may be available, which will decrease the
complexity. If G is the free commutative group generated by X than this is
the case.
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