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ABSTRACT

We present data structures and algorithms for dynamic collision detection in virtual reality
(VR) applications. The methods are applicable to all general polygonal models. They
combine the advantages of collision detection using bounding volume (BV) hierarchies
with the ability to compute dynamic collision detection results. The results are used as
input for further simulations, e.g. contact or dynamics simulation. First we present new
methods to compute BV hierarchies using optimization goals which can also be used to
improve known computation methods. Second we show how to integrate BV hierarchies
into a process of dynamic collision detection, so that the bounding objects as well as the
surface patches of the objects are tested for overlap during their motions. The performance
of the techniques is shown by means of a fitting simulation in the automotive industry.

Keywords: dynamic collision detection, bounding volume hierarchies, fitting simulation,
virtual reality

1 Introduction

Virtual reality (VR) is a leading-edge tech-
nology in the development process of techno-
logical challenging products as can be seen in
current automotive industry. Virtual proto-
typing is an effictive means to shorten devel-
opment times for new cars. One of the most
interesting parts in the virtual prototyping
of a car is the packaging which includes fit-
ting simulations. VR offers the framework to
simulate such processes in real-time within a
most realistic environment. One of the key
problems for the VR applications is the real-
time simulation of realistic object behaviour
in complex virtual environments. These envi-
ronments have the following characteristics:

- Model complexity: The input models con-
sist of thousands of polygons.

- Unstructured representation: The objects
are collections of polygons with no topo-
logical information. They may have cracks,
holes, T-joints or non-manifold geometry.
Such objects are known as polygon soups.

- Unspecified motions: The object motions
in VR applications are not specified in ad-
vance.

- Need for dynamic collision detection:
[Hel95] distinguishes between three types
of collision detection results:

- Static collision detection checks the inter-
ference of objects at one particular con-
figuration.

- Pseudo-dynamic collision detection per-
forms static interference tests at very
short time intervals in order not to miss
any collisions.



- Dynamic collision detection considers the
swept volumes of objects during their
motions and is able to report contact
time and contacting object features.

The information on the contact ge-
ometry is necessary to implement fur-
ther object simulations such as contact
simulation [Buc98], dynamics simulation
[Mir96, Sau98b, Sau98c] or virtual grasping
[Sau98a]. Fast dynamic collision detection
is a major bottleneck of multi-body simu-
lation and thus a challenging problem.

Main Contribution

We present efficient algorithms for dynamic
collision detection in VR applications. They
base on BV hierarchies which have been suc-
cessfully used in static and pseudo-dynamic
collision detection so far. Our algorithms
build BV hierarchies with different types
of bounding objects (sphere, axis-aligned
bounding box (AABB), oriented bounding
box (OBB)) and extend known techniques by
simple but effective means. Our major con-
tributions are:

- new algorithms for the computation of BV
hierarchies with different types of bound-
ing objects; extension of known hierarchy
computation methods to improve collision
detection performance.

- generalization of the static and pseudo-
dynamic collision detection procedures to a
full dynamic collision detection process. To
do this we present efficient dynamic bound-
ing object tests and basic tests between ob-
ject features (vertices, edges, faces).

- comparison of our BV hierarchies with the
best known hierarchies.

We have implemented the presented collision
detection methods as basic part of the multi-
body simulation module of DBView, the
VR software platform of Daimler-Benz Re-
search and Technology. The performance of
our methods is demonstrated using complex
virtual scenes taken from fitting simulation
during the packaging of the car development
process.

The rest of the paper is organized as fol-
lows. In section 2 we provide an overview
of other hierarchical collision detection meth-
ods. Section 3 describes the computation of
BV hierarchies. In Section 4 we explain the
methods to integrate BV hierarchies into a
process of dynamic collision detection. Sec-
tion 5 presents the performance results of our
methods and compares the different BV hi-
erarchy types. Section 6 concludes by men-
tioning some applications which profit from a
dynamic collision detection in a high degree.

2 Previous Work

Interference and collision detection problems
have been extensively studied in the litera-
ture. The most powerful algorithms use BV
hierarchies with various types of bounding
objects. They include sphere trees [Qui94,
Hub95, Pal95], AABB trees [Zac95, Zac97],
OBB trees [Got96], k-DOP trees [Klo98,
Zac98] or trees with other kinds of bounding
objects [Bar96]. The advantage of BV hierar-
chies is that they can handle general polyhe-
dral models with high model complexity but
their use is currently restricted to static and
pseudo-dynamic collision detection.

Different types of collision detection algo-
rithms are based on the GJK-algorithm
[Cam97, Leu96, Hec94, Gil88] or the closest-
feature tracking algorithm [Lin93, Pon95,
Mir97]. These algorithms are mainly re-
stricted to convex polyhedral objects. E.g.
[Mir96] uses the closest-feature tracking as
collision detection for his impulse-based dy-
namics simulation.

Only few research has been performed to re-
alize dynamic collision detection for bound-
ing objects such as spheres, AABBs or OBBs.
The main effort has been made to speed up
static interference detection between those
bounding object types. E.g. [Got96] pro-
posed an efficient static collision test for
OBBs.

3 Computation of BV Hierarchies

In this section we describe how to build BV
hierarchies. The use of BV hierarchies is cur-
rently the fastest known collision detection



method for unstructured object representa-
tions. The computation of the hierarchies
differs in various aspects:

- Types of bounding objects: Most of them
use a single type of bounding objects.

- Degree: Most BV hierarchies have degree
2, higher degrees are rarely used, e.g. 8
[Hub95].

- Type of computation: There are generally
two different kinds of computation: top-
down and bottom-up.

We present two new top-down methods to
compute BV hierarchies (see section 3.1
and 3.2) and improve the well known
Gottschalk-method. Top-down computa-
tion methods of BV hierarchies consist of two
parts:

- compute a bounding object for a set of faces

- split a set of faces

The main difference of our methods from the
methods known so far is the splitting step.
The bounding objects enclose the faces at
a certain quality which can be expressed by
different measures, e.g. volume, surface of
the bounding object or directed Hausdorff-
distance of the bounding object to the en-
closed set of faces. Splitting a set of faces
means to bound the set of faces with more
than one bounding object in order to get a
tighter bounding. Common top-down com-
putation methods for BV hierarchies split
sets of faces with a single, fixed degree. Our
new methods are able to split a set of faces
with any degree given from 2 to 6. This
flexibility enables us to control the splitting
process so that each splitting improves the
quality of the bounding objects by a given
amount. Given a set of faces F and a bound-
ing object EF , the splitting of F in k sets
of faces results in F1, . . . , Fk with bound-
ing objects EF1, . . . , EFk . The quality of the
splitting is the quality of the worst bound-
ing object. So q(EF ) is the quality of EF
and maxi=1,...,k q(EFi) is that of the splitting.
The splitting fulfills the quality requirements
if α · q(EF ) ≥ maxi=1,...,k q(EFi) with a pre-
defined improvement factor α ∈ (0, 1). The

goal of a splitting is to reach the quality im-
provement with a minimal splitting degree.
Thus we start with degree 2, compute the
splitting and increase the splitting degree un-
til the improvement requirement is fulfilled.
The splitting of a set of faces stops if the num-
ber of faces falls below a certain threshold. In
our experiments 4 has been a good choice for
this threshold. If the improvement cannot be
reached with degree 6 the set of faces will be
split with degree 6 to overcome local splitting
problems.
It remains to explain the splitting mecha-
nisms.

3.1 Heuristic without Optimization

The center of a face is the mean value of the
3D-coordinates of its vertices and the cen-
ter of a face set is the mean value of the
centers of its faces. The distance between
faces and the distance of faces from points
is computed using the centers of the faces.
In the first step all faces belong to F1, the
center cF1 of F1 is the center of F . In step
i (i = 2, . . . , k) we select the face fmax which
maximizes the distance from one of the cur-
rent centers cF1, . . . cFi−1 . The center cfmax
of fmax is the temporary center of Fi. All
faces are rearranged so that each face belongs
to the subset F1, . . . , Fi whose current center
minimizes the distance to the face. Now all
centers of F1, . . . , Fi are recomputed as the
mean values of its faces. The step of rear-
ranging the faces and recomputing the cen-
ters of the subsets is iteratively done until no
changes occur. At the end of the process all
faces crystallize into the subsets F1, . . . , Fk
and for each set of faces a bounding object is
computed.

3.2 Heuristic

During the splitting step of the heuristic
without optimization we do not know any-
thing about the quality of the bounding ob-
jects of the current subsets. The goal of this
heuristic is to control the partitioning of the
face set F by the quality of the bounding ob-
jects.
In the first step we select k faces which be-
long to different subsets in the final partition.



For this purpose we compute the smallest en-
closing box BF (with respect to the selected
quality measure) for the whole set of faces
F . We partition this box BF into k subre-
gions and select for each region the face of F
which minimizes the distance to the center of
the region. The partitioning of the box BF
is illustrated in figure 1 projected into two
dimensions. For degree 2 the longest axis is
halved, for degree 3 the longest axis is split
twice, for degree 4 the longest and the sec-
ond longest axis are halved, for degree 5 an
additional center is put into the middle of BF
and for degree 6 the longest axis is split twice
and the second is halved.

Figure 1: Partitioning of an OBB into
regions

For each of these faces we compute the small-
est bounding object (sphere, AABB, OBB).
Now we insert in a random order the remain-
ing faces of F . To do this for face f we insert
f in each current subset Fi (i = 1, . . . , k) and
modify the bounding object of Fi. We add
f to a subset so that the worst quality of all
bounding objects of F1, . . . , Fk is minimal.

3.3 Modified Gottschalk-method

We simply use the algorithm sketched above
to find the first k faces of the partition and as-
sign each face f to the subregion whose center
is closest to the center of f . In this way we
obtain the subsets F1, . . . , Fk and compute
for each subset Fi (i = 1, . . . , k) a bounding
object.

4 Dynamic collision detection

In Section 3 we described methods to com-
pute BV hierarchies. These hierarchies are
very efficient for static and pseudo-dynamic
collision detection in complex virtual envi-
ronments. They are currently not used in dy-

namic collision detection. We present meth-
ods to use BV hierarchies using spheres,
AABBs and OBBs in dynamic collision de-
tection, regardless which method is used to
compute the hierarchies.
Taking a look at the process of static collision
detection with BV hierarchies it can be seen
that there are two different types of collision
tests:
- bounding object tests
- basic tests between object features (vertices,
edges, faces)
For both kinds of tests there exist efficient
static collision tests. In the following we
present these efficient dynamic collision tests
which enable real-time collision detection in
virtual environments of moderate size.

4.1 Bounding Object Tests

Efficient static collision tests between simple
bounding objects are well known (see [Eck99]
for a survey). For dynamic collision detec-
tion we need an extension of those methods
to enable efficient dynamic collision detection
for bounding objects. In order to keep most
of the effectiveness of known static collision
tests between bounding objects we approxi-
mate the swept volume of each bounding ob-
ject during its motions by a new one which is
used in an efficient static collision test.
Since we generally do not know the exact tra-
jectories of the moving objects but only their
positions and orientations at discrete points
in time, we simply construct a sphere or a
box which encloses the bounding objects at
the beginning and at the end of a motion step
and if desired at intermediate points in time.
The smaller a single step is the more reliably
the swept volume of the bounding objects is
enclosed by the sphere or box. The smallest
enclosing sphere for a set of spheres or boxes
can be determined very efficiently. If we want
to construct a small oriented enclosing box
for a set of OBBs we choose the orientation
of an arbitrary given OBB and proceed as in
the case of axis aligned boxes. If the motion
steps are small enough it suffices to enclose
two bounding objects, namely those at the
beginning and the end of the motion step.



4.2 Basic Tests

Suppose that two objects O1 and O2 are mov-
ing from their current configuration at time
t = 0 to an intended future configuration at
time t = 1. We want more than just deter-
mine, whether O1 and O2 intersect at time
t = 1. We want to find out, whether (and
when) O1 and O2 collide (for the first time)
during their simultaneous motion, even if the
configuration at time t = 1 is collision–free.
Since our objects are modelled as sets of poly-
gons, a collision between O1 and O2 can be
detected by looking for contacts occurring be-
tween a vertex of O1 and a face of O2, or
vice versa, or an edge of O1 and one of O2.
For both contact types we define a function
d : [0, 1] −→ IR, which changes its sign in the
neighbourhood of a point in time at which
a collision occurs. In this way the problem
of calculating potential collision times is re-
duced to finding the roots of the function d(t)
in the interval [0, 1].
In the case of a vertex–face collision we sim-
ply choose d = nTv − n0 to be the signed
distance between the vertex v and the infi-
nite plane {x ∈ IR3|nTx = n0}, in which the
face lies.
In the case of an edge–edge collision we con-
sider the infinite lines defined by the edges.
Let v1, v2, and w1, w2 be the endpoints of
both edges, then we set d = nT (w1 − v1),
where n = (v2 − v1) × (w2 −w1). d(t) be-
comes zero iff all four endpoints lie in a com-
mon plane, i. e. the lines intersect or are
parallel.
In general we can only evaluate the function
d(t) at discrete points in time, so the roots
have to be approximated. We made best ex-
perience with a simple interpolation scheme
and the method regula falsi.
So far the condition d(t) = 0 is only a neces-
sary condition for the occurrence of collisions
between a vertex and a face or between two
edges. That is the reason why we have to
check every root τ of d(t) in the interval [0, 1]
whether it corresponds to a real collision:

Vertex – Face

In the following we assume that f =
(v0, . . . ,vk−1,vk ≡ v0) is a convex face which

is no restriction because non-convex faces can
be triangulated. The vertices of f are enu-
merated clockwise when looking in direction
of the face normal.
Provided that the vertex v lies in the plane
of the face f at time t = τ , we can examine
whether v lies within the boundaries of f in
the following way:

∀ i ∈ [0 : k−1] : ((vi+1−vi)×n)T (v−vi) ≤ 0.

Edge – Edge

Provided that the two infinite lines defined
by the edges intersect in a common point at
time t = τ , we can easily decide whether the
intersection point lies within both edges:

0 ≤ (v2 − v1)T (n× (w1 − v1)) ≤ n2

0 ≤ (w2 −w1)T (n× (w1 − v1)) ≤ n2

5 Implementation and Performance

We have implemented the algorithms as basic
part of the simulation environment of the VR
software platform DBView of Daimler-Benz
Research and Technology.

Object representation

Transformation mathematics

Dynamic simulation

Simulation environment

Further
simulations

Basic modules

Collision detection

Interactive
object manipulation

Figure 2: Structure of the simulation
environment

One of the application areas for simulation of
realistic object behaviour with a challenging
part for collision detection is in the packag-
ing process of the construction of cars. An
example is shown in figure 3. The task is
to remove the two covers for the light bulbs
at the headlight. The full task additionally
includes the removal of the two light bulbs
after the removal of the covers. The scene
contains only the relevant parts for the re-
moval (circa 60000 faces). Even if more parts
are included in the scene the performance of



the algorithms would not deteriorate because
of the space partitioning system used to han-
dle many objects in a scene (for details see
[Eck99]).
We have interactively generated motion se-
quences for the removal of the two covers.
The resulting motions consist of colliding and
collision-free parts so that the performance in
both cases can be seen. We have carried out
extensive experiments with different types of
bounding objects and pseudo-dynamic colli-
sion detection. In order to compare the dif-
ferent hierarchy types we have measured the
real running time of the motion sequences.
All experiments are performed with a Silicon
Graphics MIPS R10000 194Mhz. In a first
step we examined the influence of the pa-
rameters for degree and improvement on the
running time. We omitted the diagrams for
these tests (for details see [Eck99]). For each
presented hierarchy type improvement factor
α = 0.75 has been best. Although improve-
ment factor 0.75 is best for all three compu-
tation methods of section 3, it cannot be said
that this is generally true. But experiments
have shown that the computation methods
generating hierarchies with flexible degrees
tend to outperform the hierarchies with fixed
degree.
For the three computation methods of sec-
tions 3.1-3.3 we compare the results of the
simulation. The results are illustrated in fig-
ure 4. As we can see all three methods show
a good overall performance. Common tech-
niques to summarize the performance of col-
lision detection algorithms during a motion
sequence use average collision time. Taking
a look at the illustrations in figure 4 we learn
that the collision detection time varies very
fast depending on the proximity of the ob-
jects in the scene. Therefore we take a closer
look at the worst-case performance. The 40
msecs needed by the modified Gottschalk-
method is the slowest time measured but a
the same time guarantees interactive rates.
In a second step we compare the performance
of pseudo-dynamic and dynamic collision de-
tection. It is obvious that dynamic colli-
sion detection is more time-consuming than
pseudo-dynamic collision detection. But as
can be seen from figure 5 dynamic collision

detection using linear interpolation or linear
interpolation with regula falsi results in com-
putation times which are at most 100 msecs
using linear distance interpolation with reg-
ula falsi. Thus our methods for dynamic col-
lision detection facilitate the direct handling
of objects in complex virtual environments at
interactive rates.

6 Conclusions

In this paper we have presented new meth-
ods to compute BV hierarchies and to en-
able dynamic collision detection with BV hi-
erarchies in VR applications. We have imple-
mented the algorithms as part of the VR plat-
form DBView of Daimler-Benz Research
and Technology and demonstrated the per-
formance by means of a complex example of
a fitting simulation from automotive indus-
try.
Further results concerning the interplay of
our dynamic collision detection with contact
and dynamics simulation are presented in
[Buc98, Sau98b].
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Figure 3: Removal of cover for the headlight and the additional headlight
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Figure 4: Comparison of query times for the BV hierarchy types
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Figure 5: Comparison of query times for static and dynamic collision detection


