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Abstract

Detecting collisions and calculating physically correct colli-
sion responses play an important role when simulating the
dynamics of colliding rigid bodies. VR-applications such as
virtual assembly planning and ergonomy studies can espe-
cially profit from advances in these directions, because they
enable an interactive and intuitive manipulation of objects
in virtual environments. This paper presents new algorithms
for the calculation of contact forces in multi-body systems
with unilateral contacts.

1 Introduction

In order to interactively simulate an assembly of mechanical
parts in a VR-environment, the simulation software must
be able to detect collisions and calculate reaction forces ef-
ficiently. The following figure demonstrates the principle:

The manual insertion of a bolt into a hole is a difficult task
in a virtual environment, if the motion simply stops as soon
as a collision occurs. In reality the bolt automatically slides
into the right direction when it comes into contact with the
conical boundary of the hole. It is desirable to simulate this
effect in order to perform virtual fitting operations in a more
intuitive manner.
Our paper describes two different mathematical approaches
to determine the reaction forces for colliding rigid bodies.

2 Calculation of contact forces

Physically accurate models for the determination of con-
tact forces use a complementarity formulation, which reflects

the unilateral nature of the contacts [2, 5, 1, 3, 4]. These
methods are well suited for situations with multiple contact
points and can be extended to handle friction.

Let us consider a multi-body system consisting of n rigid
bodies in mutual contact at K contact points. Suppose that
body Bik touches body Bjk at the k-th contact point pk.
The interpenetration of these bodies at pk is prevented by
a pair of opposite directed contact forces ±F k = ±fknk. In
the absence of friction F k acts in direction of the normal
vector nk of the contact plane, which is tangential to the
surface of both objects at the contact point. Let the vector
rkl = pk − cl point from the center of mass of object Bl
to the k-th contact point. The position and orientation of
object Bl are described by the vector cl and a quaternion
ql. vl and ωl specify the linear and angular velocity of body
Bl and ml and Il denote its mass and its inertia matrix.

Our objective is to determine the constraint-forces F k for
k = 1, . . . ,K. To give up the component-wise description
the following vectors and matrices are quite useful: the gen-
eralized velocity vector u = [v1,ω1, . . . ,vn,ωn]T ∈ IR6n,
the generalized position vector s = [c1, q1, . . . , cn, qn]T ∈
IR7n, the vector of the magnitudes of the contact forces
f = [f1, f2, . . . , fK ]T ∈ IRK , the vector of external forces
f ext = [m1g,−ω1×I1ω1, . . . ,mng,−ωn×Inωn]T ∈ IR6n, the
matrix S = diag(E,Q1, . . . ,E,Qn) ∈ IR7n×6n, where Ql ∈
IR4×3 imitates the quaternion product 1

2
ωlql = Qlωl, the

generalized mass matrix M = diag(m1E, I1, . . . ,mnE, In) ∈
IR6n×6n, the matrix N = diag(n1, . . . ,nK) ∈ IR3K×K of
contact normals and the matrix of contact conditions J ∈
IR6n×3K . The transposed matrix JT has the following struc-
ture indicated by its k-th row:

2ik−1 2ik 2jk−1 2jk

↓ ↓ ↓ ↓[
0 . . .0 −E r×kik 0 . . .0 E −r×kjk 0 . . .0

]
.

r× ∈ IR3×3 is the skew-symmetric matrix with r×a = r×a
for a ∈ IR3.

Using this notation, the Newton-Euler equations of mo-
tion can be formulated in their continuous and discretized
(Euler-scheme) version:

ṡ = Su

u̇ = M−1(JNf + f ext)

⇒ st+∆t = st + ∆tSut+∆t (1)

ut+∆t = ut + ∆tM−1(JNf + f ext) (2)



Now we define the function δ : IR7n → IRK that computes
the contact distances δ(s) = [δ1, . . . , δK ]T for the general-
ized position vector s. Then δk is the distance between the
parts of the objects involved in the k-th (potential) contact.
Note, that δ is non-linear.

Finally, we need the function σ : IRK → IR7n taking
the magnitudes of the contact forces as arguments and com-
puting the configuration st+∆t. We obtain σ by inserting
equation (2) into equation (1):

σ(f ) = st + ∆tS(ut + ∆tM−1(JNf + f ext))

2.1 Reduction to a system of equations

If we assume that all contacts are bilateral, the condition

δ (σ(f )) = 0 (3)

with 0 = [0, . . . , 0]T ∈ IRK must hold. This is a non-linear
equation system with the contact forces as unknown quanti-
ties. E.g. it can be solved by the Newton-Raphson method,
which requires the successive solution of a K dimensional
linear system of equations. Since the contacts are not really
bilateral, we release the k-th contact if fk becomes negative.

Now suppose that all contacts are unilateral. Then a
disadvantage of the above method is that we allow negative
contact forces for one simulation step, which cause the ob-
jects to stick together for a short time. We can avoid this by
replacing condition (3) by the complementarity condition

δ (σ(f )) ≥ 0 compl. to f ≥ 0. (4)

Note that ‘a compl. to b’ is equivalent to aT b = 0 for a, b ∈
IRd. Condition (4) means that we do not allow negative
distances (i.e. interpenetration) or negative (i.e. attrac-
tive) contact forces and that at each contact point the dis-
tance or the force must be equal to zero. In order to solve
this non-linear complementarity problem (NCP) we use the
same technique as in [3] and consider the so-called Fis-
cher function ϕ : IR2 → IR which is defined by ϕ(a, b) =√
a2 + b2 − a − b. It is obvious that the following holds for

each a, b ∈ IR: ϕ(a, b) = 0 iff a ≥ 0, b ≥ 0 and ab = 0. We
define the function Φ : IR2K → IRK by

Φ(f ) = [ϕ(f1, δ1(σ(f))), . . . , ϕ(fK , δK(σ(f )))]T

Now we can transform the NCP into the non-linear equation
system

Φ(f ) = 0, (5)

which can again be solved by the Newton-Raphson method.
In contrast to the classical method [2] this approach uses
the contact distances instead of the contact accelerations as
variables complementary to the contact forces. In this way
the integration of the motion equations can be performed in
a stable way with respect to the geometric constraints. The
classical method however has to face the problem that the
deviations from the exact constraints accumulate during the
integration process.

2.2 Solution by a fixpoint iteration

Now we present an alternative method for the calculation
of the contact forces which also guarantees the compliance
with the contact conditions. It is derived from [5] and [4]
which solve a sequence of linear complementarity problems
using a fixpoint iteration.

Let us consider the normal component of the relative
contact velocity of the k-th contact point which is given by:

nTk (vjk + ωjk × rkjk)− nTk (vik + ωik × rkik)

Formulated for all contacts, this is equal to NTJTu. Now
for the velocities ut+∆t the complementarity condition

NTJTut+∆t ≥ ν
∆t

compl. to f ≥ 0 (6)

must hold with ν = [ν1, . . . , νK ]T ∈ IRK . We insert equation
(2) into equation (6) and obtain:

NTJTM−1JN∆tf

+ NTJT (ut + ∆tM−1f ext)−
ν

∆t
≥ 0 .

We choose ν = −δ(st+∆t)+∆tNTJTut+∆t. This is a linear
complementarity problem (LCP) of the form

Af + b ≥ 0 compl. to f ≥ 0 (7)

with A = NTJTM−1JN ∈ IRK×K and b ∈ IRK . It can be
solved with the classical Lemke-algorithm. A is symmetric
and positive semidefinite, because the generalized mass ma-
trix M has these properties.
The linearization makes the solution of (7) too inaccurate
to be used directly. For reasons of numerical stability it is
important to fulfil the geometric constraint δ(st+∆t) ≥ 0
exactly. This is guaranteed by the choice of ν. Therefore
we perform the following fixpoint iteration.

u′ ← ut + ∆tM−1f ext
s′ ← st + ∆tS′u′

f ← 0

repeat

f ′ ← f

f ← LCP (s′,u′)

u′ ← ut + ∆tM−1(JNf + f ext)

s′ ← st + ∆tS′u′

until |f ′ − f | < ε

st+∆t ← s′

LCP (., .) describes the Lemke-algorithm and the crucial part
of its input.
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