
Self-organizing Data Structures with Dependent
Accesses

Frank Schulz and Elmar Schömer

Universität des Saarlandes, FB 14, Informatik, Lehrstuhl Prof. Dr. G. Hotz,
Postfach 151150, 66041 Saarbrücken, Germany.

Email: {schulz,schoemer}@cs.uni-sb.de

Abstract. We consider self-organizing data structures in the case where
the sequence of accesses can be modeled by a first order Markov chain.
For the simple-k- and batched-k–move-to-front schemes, explicit formu-
lae for the expected search costs are derived and compared. We use a
new approach that employs the technique of expanding a Markov chain.
This approach generalizes the results of Gonnet/Munro/Suwanda.
In order to analyze arbitrary memory-free move-forward heuristics for
linear lists, we restrict our attention to a special access sequence, thereby
reducing the state space of the chain governing the behaviour of the data
structure.
In the case of accesses with locality (inert transition behaviour), we find
that the hierarchies of self-organizing data structures with respect to the
expected search time are reversed, compared with independent accesses.
Finally we look at self-organizing binary trees with the move-to-root rule
and compare the expected search cost with the entropy of the Markov
chain of accesses.

1 Introduction and summary

We consider the dictionary problem when the query source can be modelled by an
ergodic Markov chain. In (Hotz [7]) it has been shown that a search graph of size
Θ(n2) can be constructed such that the expected search time is asymptotically
equal to the entropy of the Markov chain. When the transition behaviour of the
chain exhibits the phenomenon of locality, that expected search time can also
be achieved with O(n) memory.

Here we want to continue that line of research. We examine approximation
schemes that are restricted to use only linear amounts of memory. In literature,
these techniques are known as self-organizing data structures.

Consider a linear list containing the elements 1, 2, . . . , n. At each access the
list has to be searched sequentially, and the search cost is assumed to be pro-
portional to the number of comparisons needed to find the requested element.

Heuristics for self-organization perform a reordering of the list and thereby
hope to reduce the search cost for the next accesses. An example is the move-to-
front rule (mtf) which places the requested element at the head of the list and
slides the other elements back one position. Another memory-free heuristic is
the transposition rule (tr) which moves the accessed element one place towards
the head of the list.

1

1.1 Known results for independent accesses

In the case of independent accesses, the requests are assumed to follow a fixed
but unknown probability distribution (p1, . . . , pn) such that element i is accessed
with probability pi. Since no ordering is used for sequential search, we may
assume p1 ≥ · · · ≥ pn. When the list is ordered by decreasing access probabilities,
the expected search cost is minimized, yielding M =

∑n
i=1 ipi. Let b(j, i) denote

the asymptotic probability that element j stands in front of element i in the list
when the move-to-front heuristic is used. It is easy to see that for i 6= j, we have
b(j, i) = pj/(pi + pj). It has been shown that the expected search cost under the
move-to-front rule is

µ =
∑
i

pi ·
(
1 +

∑
j 6=i

b(j, i)
)

= 1 + 2
∑
i<j

pipj
pi + pj

≤ π

2
·M ,

(see Burville/Kingman [2], Chung/Hajela/Seymour [4]).
A class of heuristics that are allowed to use some memory consists of the k-

in-a-row strategies, in combination with a memory-free rule R (Gonnet/Munro/
Suwanda [5]). With the simple-k-heuristic, the action of R is performed only if
the same element has been requested k times in a row. The batched-k-heuristic
groups the accesses into blocks of length k and calls R only if all requests within
the block are the same. The k-in-a-row strategies use O(log k+logn) memory in
order to store the counter value between 1 and k and the element requested last.
Let bk(j, i) and b′k(j, i) denote the asymptotic probability that j stands in front of
i in the list when the simple-k-move-to-front rule or the batched-k-move-to-front
rule respectively are applied. It has been shown that

bk(j, i) =
pkj
∑k−1
l=0 p

l
i

pkj
∑k−1
l=0 p

l
i + pki

∑k−1
l=0 p

l
j

(1)

b′k(j, i) =
pkj

pki + pkj
, (2)

which allows for the calculation of the expected search time µ. It has been demon-
strated that considerable improvements of the search time are achieved even for
small values of k, and that µ→M as k →∞. Furthermore, for fixed k batched-
k-mtf performs better than simple-k-mtf (see Gonnet/Munro/Suwanda [5]).

The move-to-front heuristic is an example from the class of memory-free
move-forward rules. Such a rule is specified by a sequence 1 = m1 ≤ m2 ≤ · · · ≤
mn with mi < i for all i = 2, . . . , n. The interpretation is that an element at
position i of the list is moved to position mi upon request, leaving the relative
ordering of the other elements unchanged. Examples of these rules are:

move-up(k) the requested element is placed at the head of the list if its position
is i ≤ k, and moved k places up if its position is i > k

pos(k) the requested element is moved one place up if its position is i ≤ k, and
moved to position k if its position is i > k

switch(k) the accessed element is moved to the head of the list if its position
is i ≤ k, and moved one place up if its position is i > k.

A partial ordering of the move-forward rules can be defined as follows: given two
rules R and R′ specified by m1, . . . ,mn and m′1, . . . ,m

′
n respectively, R ≤ R′

holds if m′i ≤ mi for all i = 1, . . . , n. The following spectra of rules can be
compared:

tr ≤ R ≤ mtf for all move-forward rules R
move-up(k) ≤ move-up(k + 1)
pos(k + 1) ≤ pos(k)
switch(k) ≤ switch(k + 1)

For the special access distribution p1 = α, p2 = · · · = pn = β, it has been shown
by Lam [12] that the expected search times µ(R) and µ(R′) of two move-forward
rules R and R′ obey

R ≤ R′ =⇒ µ(R) ≤ µ(R′) , (3)

which entails the corresponding relations of expected search time for the spec-
tra described above (see Kan/Ross [8], Lam [12], Phelps/Thomas [14], Tenen-
baum/Nemes [16]).

1.2 Known results for dependent accesses

In the case of dependent accesses we assume that the sequence of requests can be
modeled by an ergodic first-order Markov chain with transition matrix P = (pij)
and stationary distribution (q1, . . . , qn). Let M = (mij) denote the matrix of
mean first-passage times. It has been shown that the asymptotic probability
b(j, i|i) that j stands in front of i in the list when i is requested and the move-
to-front rule is given by b(j, i|i) = 1/(qi(mij + mji)), and hence the expected
search time is

µ =
n∑
i=1

qi ·
(
1 +

∑
j 6=i

b(j, i|i)
)

= 1 + 2
∑
i<j

1
mij +mji

(see Lam/Leung/Siu [13]). Since the heuristic does not have a memory, a query
source with memory can always outperform it. There are situations, however, in
which the heuristic performs very well. These situations can be described by the
phenomenon of locality: a small subset of elements is requested for a long time
before the access sequence switches to another small subset.

Recently it has been demonstrated that in some of these cases, the move-to-
front heuristic is optimal in that its expected search time is not greater than the
expected search time of any other sequential search strategy, even if that search
strategy may use arbitrary amounts of memory (Chassaing [3]).

1.3 New results

We consider the simple-k- and batched-k-move-to-front schemes and derive for-
mulae for the asymptotic probabilities bk(j, i|i) and b′k(j, i|i) that j stands in
front of i when i is requested. This is achieved by expanding the chain of ac-
cesses to k-tuples and looking for the occurrence of tuples which consist solely
of i’s or j’s. In the special case of independent accesses the results cited above
are obtained.
As an example, we calculate the expected search cost for the access sequence
defined by

pij =
{
α : i = j
β : i 6= j

}
with 0 ≤ α < 1 and β = (1 − α)/(n − 1). The phenomenon of locality appears
for α > β. In this case, we observe that the expected search time gets worse
for increasing k and approaches (n + 1)/2 as k → ∞. Furthermore, simple-k-
mtf performs better than batched-k-mtf. Hence the ordering of strategies with
respect to the expected search time is reversed, compared with independent
accesses.

As for the analysis of the class of memory-free move-forward rules, we restrict
our attention to the same access sequence. This enables us to reduce the state
space of the Markov chain governing the behaviour of the data structure. Given
two move-forward rules R,R′ and α ≥ β, the expected search times satisfy

R ≤ R′ =⇒ µ(R′) ≤ µ(R) .

As a consequence, we find again that the hierarchy of heuristics is exactly re-
versed, compared with independent accesses (see (3)). For the first time, memory-
free heuristics other than move-to-front are analyzed in the case of Markovian
access sequences.

Finally we look at self-organizing binary search trees, and compare the ex-
pected search time with the entropy of the chain of accesses.

2 k-in-a-row heuristics

In order to analyze the simple-k-mtf heuristic, we observe

Lemma 1. Using simple-k-move-to-front, the element j stands in front of i if
the last sequence of k subsequent accesses to j has occurred after the last sequence
of k subsequent accesses to i.

At any instant in time, the current form of the data structure depends on its
history. Therefore, we want to employ backward analysis and look at the past.
Hence we reformulate the lemma:

When l is requested, j stands in front of i if we trace back the chain of accesses
starting from l and encounter k subsequent accesses to j before we encounter k
subsequent accesses to i.

Two techniques from Markov chain theory are needed: reversal of time and
expansion of the chain (see for example Kemeny/Snell [10]).
When P is an ergodic Markov chain with state space S = {1, . . . , n} and station-
ary distribution (q1, . . . , qn), the time-reversed chain P̂ is defined by its transition
probabilities

p̂ij =
qjpji
qi

.

For k > 1, the expanded chain P̃ has the state space

S̃ = {[i1 . . . ik] | ij ∈ S, pi1i2 · . . . · pik−1ik > 0} .

A transition can be viewed as sliding a window of size k over the original se-
quence:

p̃[i1...ik][j1...jk] = pikjk · δ[i2...ik][j1...jk−1] ,

where
δ[a1...aj][b1...bj] =

{
1 : ai = bi for i = 1, . . . , j
0 : otherwise

}
denotes the Kronecker symbol. The fundamental matrix of an ergodic chain
is defined as Z = (zij) = (I − P + Q)−1, where Q is the limiting transition
matrix of the chain [10]. From this, the first passage times can be calculated as
mij = (δij − zij + zjj)/qj . We want to express the first passage times of the
time-reversed expanded chain with quantities of the original chain. This gives:

m̂[i1...ik][j1...jk] = zjkj1/qj1 − zjki1/qi1

+
1−

∑k−2
l=1 qj1pj1j2 · · · pjljl+1(δjl+1i1 · · · δjkik−l/qi1 − δjl+1j1 · · · δjkjk−l/qj1)

qj1pj1j2 · · · pjk−1jk

.

For an ergodic chain, the probability of starting in state l and reaching state
j without passing through the taboo state i is given by

if
∗
lj =

mli +mij −mlj

mij +mji

(see Kemperman [11]). Let b([j . . . j], [i . . . i] | [l1 . . . lk−1i]) be the asymptotic
probability that [j . . . j] appears before [i . . . i] when we start the time-reversed
expanded chain in state [l1 . . . lk−1i]. With the above formula, this can be calcu-
lated from

b([j . . . j], [i . . . i]|[l1 . . . lk−1i]) =
m̂[l1...lk−1i][i...i] + m̂[i...i][j...j] − m̂[l1...lk−1i][j...j]

m̂[i...i][j...j] + m̂[j...j][i...i]
.

Given these probabilities, and taking the mean over all l1, . . . , lk−1, we get the
asymptotic probability bk(j, i|i) that j stands in front of i when i is accessed
and the simple-k-move-to-front rule is used. The probability of occurence of
[l1 . . . lk−1i] is the probability to trace back the sequence from i and encountering
lk−1, . . . , l1 subsequently. Hence

bk(j, i|i) =
∑

l1...lk−1

p̂ilk−1 · p̂lk−1lk−2 · · · p̂l2l1 · b([j . . . j], [i . . . i]|[l1 . . . lk−1i]) .

Let p(t)
ij denote the probability of going from i to j in exactly t steps. Combining

these considerations, we get the following result.

Theorem 2.

bk(j, i|i) =

qjp
k−1
jj

[
k−2∑
t=0

ptii + pk−1
ii

k−1∑
t=1

(p(t)
ji − p

(t)
ii) + pk−1

ii

(
qimji +

∑
l

qlp
(k−1)
li (mil −mjl)

)]

qip
k−1
ii

k−2∑
t=0

ptjj + qjp
k−1
jj

k−2∑
t=0

ptii + qiqjp
k−1
ii pk−1

jj (mij +mji)

See [15] for the details of the derivation. The expected search time under the
simple-k-move-to-front rule is µ = 1 +

∑
j 6=i qi · bk(j, i|i).

For independent accesses, pij = qj , hence p(t)
ij = qj for t ≥ 1 and mij = 1/qj,

thus formula (1) for bk(j, i) is obtained.

For the batched-k-move-to-front, we observe

Lemma 3. Employing batched-k-move-to-front, the element j stands in front of
i if the last block of accesses to j has occured after the last block of accesses to i.

In order to apply backward analysis, we use the reformulation:
When l is requested, j stands in front of i if we trace back the chain of accesses

starting from the current block (the block containing l) and encounter a block of
j’s before a block of i’s has appeared.

Simplifying the calculation, we use the transition matrix that combines k
steps into one: P̄ = P k. Let Z̄ = (z̄ij) = (I − P̄ + Q)−1 be the corresponding
fundamental matrix, where Q is the limiting transition matrix of the ergodic
chain (Kemeny/Snell [10]) .
Using a similar technique as above, we define an expanded chain with transition
probabilities

p̃[i1...ik][j1...jk] = pikj1 · pj1j2 · · · pjk−1jk .

Then we calculate the asymptotic probability b([j . . . j], [i . . . i]|l) that [j . . . j]
appears before [i . . . i] appears, when the time-reversed expanded chain is started
from [l . . .]. As no tuples overlap, it is sufficient to know the first element l of
the current block.

b([j . . . j], [i . . . i]|l) =
m̂[l...][i...i] + m̂[i...i][j...j] − m̂[l...][j...j]

m̂[i...i][j...j] + m̂[j...j][i...i]

In the current block, the current access to i can appear at position 1, 2, . . . , k,
each with probability 1/k. When it occurs at position m within the current block,
we go m− 1 steps back to reach the first element of the block. This element is l
with probability p̂(m−1)

il . Hence

b′k(j, i|i) =
1
k

k∑
m=1

∑
l

p̂
(m−1)
il · b([j . . . j], [i . . . i]|l)

Theorem 4.

b′k(j, i|i) =

qjp
k−1
jj − qjpk−1

ii pk−1
jj

∑
x

(
z̄jx − z̄ix

)(
pxi −

k∑
m=1

p
(m)
xi /k

)
qip

k−1
ii + qjp

k−1
jj − pk−1

ii pk−1
jj

∑
x

(
z̄jx − z̄ix

)(
qjpxi − qipxj

)
For independent accesses, formula (2) for b′k(j, i) follows as a corollary.
We want to illustrate the results with the access sequence

pij =
{
α : i = j
β : i 6= j

}
(4)

with 0 ≤ α < 1 and β = (1 − α)/(n − 1). For α > 1/n, this sequence exhibits
the phenomenon of elementwise locality, the degree of locality can be adjusted
via the parameter α.

Theorem 5. For the access sequence (4), the simple-k-move-to-front rule pro-
duces the expected search cost

µ = 1 +
n(n− 1)(1− αk)

2(n− αk−1)
,

and the batched-k-move-to-front rule

µ′ = 1+
n− 1

2
·
(

1−
αk−1(nα− 1)

(
(n− 1)k − (nα− 1)k

)
k(n− nα)

(
(n− 1)k − (nα− 1)k + αk−1(nα− 1)(n− 1)k−1

)) .

One easily sees that for α > 1/n (locality of references), the expected search time
is monotone increasing in k. For all α < 1, it approaches (n + 1)/2 as k → ∞.
The expected search time in dependence of α looks as follows:

-

6

1/n 1
α

µ

1

(n+1)/2

HHHHHHHHHHHHHHHHHHHHHHHHHHHHH

k=1

k=2

k=3

k=10

Comparing µ and µ′, and using Bernoulli’s inequality, we find

Theorem 6. For the access sequence (4) and all n ≥ 2, k ≥ 2, the simple-k rule
performs better than the batched-k rule in the situation of locality:

α > β =⇒ µ < µ′ .

Again, the order is reversed, compared with independent accesses.

3 Move-forward rules

In order to analyze arbitrary move-forward rules, one has to look at the Markov
chain that describes the states of the data structure and the transitions between
them. Each permutation of the list is a state, and a transition from state π to
state σ is possible if there is an element i such that σ is obtained when the action
of the heuristic is applied to π upon request of i.

In the case of independent accesses that are identically distributed with the
distribution (p1, . . . , pn), this transition has the probability pπσ = pi.
When accesses are dependent and governed by the transition matrix P = (pij),
we have to consider the extended Markov chain with states (π|i), where π is the
current permutation of the list and i is the element that will be requested next.
Then the transitions have the probability

p(π|i)(σ|j) =
{
pij : π is permuted to σ after the request of i
0 : otherwise

}
.

In the situation of independent accesses, several authors have restricted the
accesses to the distribution p1 = α, p2 = · · · = pn = β (see [8, 12, 14, 16]). The
benefit is that it now suffices to know the position of element 1. Thus, the size
of the state space can be reduced from n! to n (by lumping the chain).

For dependent accesses, we take a similar approach. By restricting our atten-
tion to the access sequence defined by the Markov chain with transition proba-
bilities

pij =
{
α : i = j
β : i 6= j

}
, (5)

we claim that the size of the state space can be reduced from nn! to n. It
is sufficient to know the position of the element that is requested next. Let
q(i1, . . . , in|ij) be the asymptotic probability that the list is in configuration
π = (i1, . . . , in) and ij is requested next. Then the definition

q(j) = n! · q(i1, . . . , in|ij)

is well-defined for all move-forward rules, as we will demonstrate.
Let R be a move-forward rule defined by 1 = m1 ≤ · · · ≤ mn with mi < i for
i ≥ 2. Let W (k) = {l | ml = k} be the set of all positions whose elements are

moved to position k upon request. The steady-state equations for the extended
Markov chain are

q(i1, . . . , in|ij) =
n∑
k=1

∑
l∈W (k)

pikij · q(i1, . . . , ik−1, ik+1, . . . , il, ik, il+1, . . . , in|ik)

with the convention q(i1, . . . , ik−1, ik+1, . . . , il, ik, il+1, . . . , in|ik) = q(i1, . . . , in|i1)
in the case k = l = 1.
Using the above reduction and noting

∑n
l=1 q(l) = 1, we obtain

q(j) = β + (α− β)
∑

l∈W (j)

q(l) for j = 1, . . . , n (6)

This system of equations is consistent and possesses a unique solution. The n×n
transition matrix P of the extended but reduced chain looks as follows:

P =



α β β β · · · β
... β β β · · · β
α β β β · · · β
β α β β · · · β

β
... β β · · · β

β α β β · · · β
...

β · · · β α β · · ·


(7)

In column k, exactly the elements pik with i ∈ W (k) are α, all others are β.
Since q(j) is the probability that the element on position j will be requested

next, the expected search time is µ =
∑n

j=1 jq(j).

Theorem 7. Given two move-forward rules R,R′, their expected search times
under the access sequence (5) and α ≥ β obey

R ≤ R′ =⇒ µ(R′) ≤ µ(R) .

For the proof we need the concepts of vector dominance and monotone ma-
trices (see Keilson/Kester [9] for the background, Lam [12] for the application
to independent accesses).
A probability vector q = (q(1), . . . , q(n)) dominates another probability vector
q′ = (q′(1), . . . , q′(n)), denoted by q′ ≺ q, if

n∑
j=i

q′(j) ≤
n∑
j=i

q(j) for all i = 1, . . . , n .

A Markov chain with transition matrix P = (pij) is stochastically monotone
if for all fixed s, the partial sum of the ith row, Pis =

∑s
j=1 pij , is monotone

non-increasing in i.

Lemma 8. Let P and P ′ be two ergodic and stochastically monotone Markov
chains with stationary probabilities q and q′ respectively. Then

qP ′ ≺ q =⇒ q′ ≺ q

(see [9, 12]).
Now given two move-forward rules R ≤ R′ under the access sequence (5),

we show that in the situation α ≥ β, their transition matrices P, P ′ given by
(7) are stochastically monotone and their stationary probabilities obey qP ′ ≺ q.
With the lemma, we get q′ ≺ q:

∑n
j=i q

′(j) ≤
∑n

j=i q(j) for all i. Summing over
i yields

∑n
i=1 iq

′(i) ≤
∑n

i=1 iq(i), which is µ(R′) ≤ µ(R).
From the definition of P it is easy to see that P is stochastically monotone

in the case α ≥ β.
Since q is the stationary distribution for P , q = qP , and qP ′ ≺ q is equivalent

to qP ′ ≺ qP . Let

V (i) =
n⋃
j=i

W (j) = {l | ml ≥ i} .

We demonstrate qP ′ ≺ qP in the situation α ≥ β. For all i = 1, . . . , n, the
following is equivalent

n∑
j=i

(qP ′)j ≤
n∑
j=i

(qP)j

n∑
j=i

(
β + (α− β)

∑
l∈W ′(j)

q(l)
)
≤

n∑
j=i

(
β + (α − β)

∑
l∈W (j)

q(l)
)

n∑
j=i

∑
l∈W ′(j)

q(l) ≤
n∑
j=i

∑
l∈W (j)

q(l)

∑
l∈V ′(i)

q(l) ≤
∑
l∈V (i)

q(l)

which is true since m′l ≤ ml for all l = 1, . . . , n entails V ′(i) ⊆ V (i) for all
i = 1, . . . , n. This completes the proof. ut

4 Self-organizing binary search trees

In this section we briefly consider self-organizing search trees with the move-to-
root heuristic. For independent accesses that are distributed with the distribution
(p1, . . . , pn), the move-to-root heuristic achieves the expected search time

µ = 1 +
∑
i<j

pipj
pi + · · ·+ pj

≤ 1 + 2 ln 2 ·H(p)

where H(p) = −
∑
i pi log2 pi is the entropy of the access distribution (see [1] or

[6]).
For dependent accesses, we want to apply backward analysis. Hence we re-

formulate the lemma given in (Allen/Munro [1]).

Lemma 9. Let i < j. When k is requested, j is an ancestor of i in the tree, if
we trace back the sequence of accesses starting from k and encounter j before we
encounter any of the elements i, . . . , j−1. Similarly, when k is requested, i is an
ancestor of j, if we trace back the access sequence starting from k and encounter
i before we encounter any of the elements i+ 1, . . . , j.

In the case of move-to-front, we had to deal with singleton taboo sets. Now
the taboo sets H = {i, . . . , j − 1} and H = {i+ 1, . . . , j} respectively are of size
|j − i|.
The probability d(j, i|i) that j is an ancestor of i in the tree when i is accessed
is given by

d(j, i|i) = H f̂
∗
ij =

det((δab − 1)m̂ab + m̂ib + m̂aj − m̂ij)a,b∈H
det((δab − 1)m̂ab + m̂jb + m̂aj)a,b∈H

with H = {i, . . . , j − 1} and m̂ij being the mean first passage time in the time-
reversed chain of accesses (for d(i, j|j) similarly), see (Kemperman [11]). The
expected search time is µ = 1 +

∑
j 6=i qi · d(j, i|i). Unfortunately we did not

succeed in deriving a nice expression giving µ in terms of the Markov chain of
accesses.

We restrict our attention to a special sequence of requests. Given a probability
distribution q = (q1, . . . , qn), all qi > 0, we define

P = λ ·Q+ (1− λ) · I (8)

where Q is the matrix of independent transitions with distribution q, I is the
identity matrix, and 0 < λ ≤ 1. The stationary distribution of the ergodic chain
P is q.

Theorem 10. Let µ(Q) be the expected search cost for independent accesses with
distribution q. The expected search cost under the move-to-root heuristic for the
access sequence P defined by (8) is

µ(P) = λ · µ(Q) + (1− λ) . (9)

This is exactly the same formula that was found for linear lists and the move-
to-front rule under that access sequence (Lam/Leung/Siu [13]). See [15] for the
derivation.

As a corollary, for all distributions q with qi > 0 and all ε > 0 we can define
a Markov chain with stationary distribution q such that the expected search
cost under the move-to-root heuristic is µ(P) < 1 + ε, by choosing λ sufficiently
small, e.g. λ = min(1, ε/(µ(Q)− 1)).

Theorem 11. For the Markov chain P defined by (8), the expected search cost
is bounded by

µ(P) ≤ 1 + 2 ln 2 ·
(
H(P) + 1−H(λ, 1− λ)

)
≤ 1 + 2 ln 2 ·

(
H(P) + 1

)
≤ 3 + 2 ln 2 ·

(
µopt + logµopt

)

where H(P) is the entropy of the chain, H(., .) is the entropy function and µopt

is the asymptotically optimal search time which can be realised upon knowledge
of P (see Hotz [7]).

The factor 2 ln 2 is the same as for independent accesses. This is interesting
since neither H(P) nor µopt reflect the locality of accesses. It would be desirable
to establish a bound on the expected search cost of move-to-root for a broader
range of access sequences.

References

1. B. Allen and I. Munro. Self-organizing binary search trees. Journal of the ACM,
25(4):526–535, 1978.

2. P. J. Burville and J. F. C. Kingman. On a model for storage and search. Journal
of Applied Probability, 10:697–701, 1973.

3. Ph. Chassaing. Optimality of move-to-front for self-organizing data structures with
locality of references. Annals of Applied Probability, 3(4):1219–1240, 1993.

4. F. R. K. Chung, D. J. Hajela, and P. D. Seymour. Self-organizing sequential search
and Hilbert’s inequalities. In Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, pages 217–223, New York, 1985.

5. G. H. Gonnet, J. I. Munro, and H. Suwanda. Exegesis of self-organizing linear
search. SIAM Journal of Computing, 10(3):613–637, 1981.

6. G. H. Gonnet, and R. Baeza-Yates. Handbook of Algorithms and Data Structures.
Addison-Wesley, 1991.

7. G. Hotz. Search tress and search graphs for markov sources. Journal of Informa-
tion Processing and Cybernetics, 29:283–292, 1993.

8. Y. C. Kan and S. M. Ross. Optimal list order under partial memory constraints.
Journal of Applied Probability, 17:1004–1015, 1980.

9. J. Keilson and A. Kester. Monotone matrices and monotone markov processes.
Stochastic Processes and Applications, 5:231–241, 1977.

10. J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van Nostrand, Princeton,
1960.

11. J. H. B. Kemperman. The First Passage Problem for a Stationary Markov Chain.
University Press, Chicago, 1961.

12. K. Lam. Comparison of self-organizing linear search. Journal of Applied Probabil-
ity, 21:763–776, 1984.

13. K. Lam, M. Y. Leung, and M. K. Siu. Self-organizing files with dependent accesses.
Journal of Applied Probability, 21:343–359, 1984.

14. R. I. Phelps and L. C. Thomas. On optimal performance in self-organizing paging
algorithms. Journal Inf. Optimization Science, 1:80–93, 1980.

15. F. Schulz. Self-organizing data structures with dependent accesses. MSc Thesis
supervised by Prof. Dr. G. Hotz, University of Saarbrücken, 1995 (in German).
See http://hamster.cs.uni-sb.de/˜schulz/

16. A. M. Tenenbaum and R. M. Nemes. Two spectra of self-organizing sequential
search algorithms. SIAM Journal of Computing, 11:557–566, 1982.

This article was processed using the LATEX macro package with LLNCS style

