
Subquadratic algorithms for the general collision detection problem

Elmar Schömer∗ Christian Thiel†

December 12, 1995

Abstract

We present the first subquadratic collision detection
algorithm for simultaneously moving geometric objects
which works in a fairly general setting. Geometric ob-
jects are regarded as rigid bodies in 3-space and are
represented by unions of triangles (polyhedra) or unions
of spheres (molecules). The motions of all objects are
specified by polynomial functions which describe their
position and orientation at any point in time. The gen-
eral framework we develop for the solution of our specific
problem is interesting of its own because it may be ap-
plicable for a wide range of other problems which require
the solution of systems of polynomial (in)equalities.

Classification: algorithms and data structures,
computational geometry

1 Introduction

Collision detection is prerequisite for simulating the
physically correct behaviour of real world processes. It
is an important tool in the field of “mechanical com-
puter aided engineering” and in the field of “computa-
tional molecular biology”. There it is essential to detect
unintentional interferences between objects as early as
possible. Moreover real time collision detection is still
a major bottleneck in most virtual reality applications.
That is the reason why efficient collision detection algo-
rithms must be developed.

Let us consider the problem of collision detection ab-
stractly.

Given two simultaneously moving objects
B1 and B2 with well defined geometric form
and trajectory, decide whether their motion is
collision-free.

∗Universität des Saarlandes, Fachbereich 14, Informatik,
Im Stadtwald, D-66041 Saarbrücken, Germany. E-mail:
schoemer@cs.uni-sb.de.
†Max-Planck-Institut für Informatik, Im Stadtwald, D-66123

Saarbrücken, Germany. E-mail: thiel@mpi-sb.mpg.de. This au-
thor was supported by the ESPRIT Basic Research Actions Pro-
gram, under contract No. 7141 (project ALCOM II).

To be more specific we assume that the objects Bi are
rigid bodies represented by a set of triangles or by a set
of spheres. The complexity of Bi is simply measured by
the cardinality of the defining set. The trajectory of each
Bi is specified in advance by a polynomial function Ci(t)
which describes its configuration at time t ∈ [0, 1]. A
collision between two molecules/polyhedra occurs if two
spheres/triangles from different objects collide. Thus
the trivial algorithm to detect a collision simply com-
pares every pair of spheres/triangles and runs in time
O(N2). Here N = |B1| + |B2| denotes the total com-
plexity of both objects. The contribution of this paper
consists in the proof that it is possible to decide in time
o(N2) whether the objects collide. This result can be
seen as a generalization of the results obtained in [6].

This paper is organized as follows. First we describe
the mathematical model which underlies our approach.
Next we summarize previous results for some special
cases of the collision detection problem, which build the
kernel of the general strategy. In particular we introduce
the concept of linearization. In section 4 we show how
to reduce the collision detection problem for two spheres
or two triangles to the task to determine the number of
real roots of a polynomial satisfying several polynomial
inequalities.

In contrast to the solutions proposed in [1, 2], which
are based on Sturm sequences, we apply some long
known theorems of Jacobi, Hermite and Sylvester which
deal with the existence of real roots of a system of uni-
variate polynomial equations/inequalities (see sections
5, 6). It turns out, that this technique is especially suit-
able to find an appropriate linearization. The combi-
nation of the data structures in section 3 and this lin-
earization yields a subquadratic algorithm.

2 Preliminaries

The configuration of a rigid body Bi in 3-space can
be easily specified by the position and orientation of its
local coordinate frame. Let vector oi ∈ IR3 denote the
position of Bi’s reference point and quaternion i ∈ IR4

its orientation. Quaternion calculus provides an elegant

1

C1(0)

C1(1)

C2(0)

C2(1)

o

Figure 1: Configuration space

way of algebraically specifying orientations in 3-space
analogous to complex numbers in 2-space. (For a short
review of quaternion calculus see appendix A.) Thus
the configuration Ci(t) at time t can be represented as
a tuple (oi(t), i(t)) ∈ IR3 × IR4. For a moving body
Bi the configuration Ci(t) varies with time and defines
a unique trajectory. For simplicity we assume that the
motion is confined to the time interval [0, 1].

Ci(t) : [0, 1] 7→ IR3 × IR4

Ci(t) = (oi(t), i(t))
where oi(t) ∈ IR[t]3 and ri(t) ∈ IR[t]4

I.e. the components of oi(t) and i(t) are polynomials
in t. Let di and d′i denote their degree. In vector-matrix
notation the trajectory of a single point x ∈ Bi is given
by

x(t) = Ri(t)x + oi(t). (1)

where Ri(t) ∈ IR(t)3× IR(t)3 is the rotation matrix cor-
responding to the quaternion i(t) (see equation (3)).

The following table shows the simplest kinds of mo-
tion of a rigid body Bi for the case of constant or lin-
early changing positions and orientations and in figure 1
and 2 such motions are depicted in configuration and in
physical space.

di = 0 d′i = 0 Bi remains stationary
di = 1 d′i = 0 Bi is translated in a fixed direction
di = 0 d′i = 1 Bi rotates about a fixed axis
di = 1 d′i = 1 Bi’s motion is a superposition of a

translation and a rotation

P1(C1(0))
P1(C1(1))

P2(C2(0))

P2(C2(1))

Figure 2: Physical space

3 General approach

For the collision detection problem for a stationary
and a translationally moving polyhedron respectively a
polyhedron rotating about a fixed axis subquadratic al-
gorithms were presented in [6]. In this paper we will
use the same data structures for solving the general ver-
sion of the problem. For completeness we give a short
overview of the approach in [6]. The basis of our algo-
rithm is an efficient solution of the following subproblem:

Let S be a set of rigid bodies of the same
type and let Q be a second set of rigid bodies
of another type. Build a data structure that,
given a query object Q ∈ Q decides quickly
whether the object Q collides with an object
from the set S during its motion. We call this
the on-line collision problem for Q with respect
to S.

Our strategy is to reduce the collision problem to a
problem for other objects that do not move and then
solve the latter by known techniques. This is done by
the concept of linearization. To find a linearization of
the collision problem means to establish the equivalence

[∃t ∈ [0, 1] : S(t) ∩Q(t) 6= ∅] (2)

⇐⇒
dis∨
i=1

con∧
j=1

[
dim∑
k=1

σijk (S) δijk (Q) ./ 0

]
,

where ./∈ {<,>,=}, dis, con, dim are positive con-
stants, and σijk (S) respectively δijk (Q) are rational func-
tions of constant degree depending on the kind of motion
and kind of objects.

2

Having such a linearization we map the objects S ∈ S
into the points pij := (δij1 (S), δij2 (S), . . . , δijdim(S)) in
IRdim and the query object Q into the hyperplanes
hij := (σij1 (Q), σij2 (Q), . . . , σijdim(Q)) in the same space.
Then we can think of any

∑dim
k=1 σ

ij
k (Q) δijk (S) ./ 0 as the

condition, that (depending on ./) the point pij lies on
the hyperplane hij respectively in a halfspace bounded
by hij .

Therefore the linearization (2) leads to a combination
of several halfspace range searching problems. A general
notation for such combined search problems was first
introduced in [4]:

Let P = {p1, p2, . . . , pN} be a set of N points in
IRdim, let R denote the set of all simplices in IRdim, let
S = {s1, . . . , sN} be a set of N objects, and let Q de-
note a set of queries on S. The composed query problem
(S′,Q′) is defined as follows: S′ = {(pi, si); 1 ≤ i ≤ N},
Q′ = R×Q and the answer set for a query (R,Q) ∈ Q′ is
given by {(p, s); (p, s) ∈ S′ and p ∈ R and s ∈ Q}. We
also say that (S′,Q′) is obtained from (S,Q) by simplex
composition.

Simplices in dim-space are the intersection of at most
dim + 1 many halfspaces. Therefore we can w.l.o.g.
consider simplex compositions where the simplices are
halfspaces. In this case we also use the term halfspace
composition.

Because each conjunction of (2) can be interpreted as
the composition of con halfspace range searching prob-
lems we can find the objects in S satisfying a particu-
lar conjunction by applying halfspace composition con
times. The disjunctions of (2) correspond to the union
of ranges.

In his Ph.D. thesis [4] Marc van Kreveld investigated
efficient solutions for simplex composition1 of query
problems:

Theorem 1 ([4]) Let P be a set of N points in dim-
space, and let S be a set of N objects in correspondence
with P. Let T be a data structure on S having building
time b(N), size s(N) and query time q(N). For an ar-
bitrary small constant ε > 0, the application of simplex
composition on P to T results in a data structure D of
building time O(M ε(M + b(N))), size O(M ε(M +s(N))
and query time O(N ε(q(N)+N/M1/dim)) for every fixed
M such that N ≤M ≤ Ndim, assuming that s(N)/N is
non-decreasing and q(N)/N is non-increasing. Report-
ing takes additional O(K) time if there are K answers.

Assume we have N objects Q ∈ Q instead of only one
and we want to decide whether there occurs any collision
between any pair Q,S, for Q ∈ Q and S ∈ S. We apply

1Actually we use only halfspace composition

the solution to the on-line problem and query the data
structure of theorem 1 with each element in Q.

Using this approach we get the following result.

Corollary 1 Given a set S of N objects and a set Q
of N objects. Assume that there is a linearization of the
collision problem for Q with respect to S in the form
of (2). Then we can solve in O(N

2dim
dim+1 +ε) time and

space the problem of collision detection between any el-
ements of Q and S.

We have reduced the collision problem to the task
of the formulation of an appropriate linearization. In [6]
the linearization is derived from an explicit computation
of the collision times. We could do this because the
equations of the motions had degree at most two. The
natural question is how we can proceed if the motion of
the objects is more complicated, i.e. if the equations have
degree greater than five (then no explicit formulation of
the roots exists).

Actually we do not need an explicit representation of
the collision times for the linearization. We only need to
know whether two particular objects collide during the
specified time period.

4 Collision of two molecules/polyhedra

In the following we deal either with the collision be-
tween two molecules or between two polyhedra.

A collision between two molecules occurs if a sphere
of one molecule collides with a sphere of the other one.

A collision between two polyhedra is a little bit more
difficult to characterize. A collision occurs if a vertex
of one polyhedron hits a vertex/edge/face of the other
one or if two edges collide. We want to derive polyno-
mial formulas for the different types of collision on the
condition that each point x of body Bi moves according
to equation 1. We begin with the discussion of the col-
lision of two spheres. After that we derive a necessary
condition for the collision of two edges. By extending
the edges to infinite lines we get a set of potential col-
lision times as roots of a univariate polynomial. With
the help of additional polynomial inequalities we can re-
strict this set to those roots which actually represent a
collision of the edges (see 4.2-4.3). In order to take care
of the restricted duration of the motion we introduce the
inequality g0(t) := t(1− t) > 0.

In sections 4.4 and 4.5 we proceed in an analogous
way in order to deal with the collision of a vertex and a
face. The extension of the face to a plane enables us to
find a superset of the desired collision times.

3

4.1 Collision of two spheres

If a moving sphere Sa(t) (center a, radius a0) collides
with an other moving sphere Sb it holds:

|a(t)− b(t)| = a0 + b0

⇐⇒ (R1(t)a + o1(t)−R2(t)b− o2(t))2 = (a0 + b0)2

⇐⇒ (o1(t)− o2(t))2 − 2aTR1(t)TR2(t)b
+2(o1(t)− o2(t))T (R1(t)a−R2(t)b)
−(a0 + b0)2 + a2 + b2 = 0

By multiplying with the denominators we get a polyno-
mial f(t) of degree 2(d′1 + d′2) + 2 max{d1, d2}. Its zeros
correspond to the collision times.

4.2 Collision of lines

If a line Lab(t) collides with an other line Lcd(t) the
points a, b and c, d lie in a common plane. This can be
expressed as the vanishing of the following determinant

det
[

1 1 1 1
a(t) b(t) c(t) d(t)

]
= 0

⇐⇒ (d(t)− c(t))T (a(t) × b(t))
+(c(t)× d(t))T (b(t)− a(t)) = 0

⇐⇒ (d− c)TR2(t)TR1(t)(a× b)
+(c× d)TR2(t)TR1(t)(b− a)
+(o1(t)− o2(t))T (R1(t)(b − a)
×R2(t)(d− c)) = 0

Here the resulting polynomial f(t) has degree 2(d′1 +
d′2) + max{d1, d2}.

4.3 Collision of line segments

A collision between two open line segments lab(t) and
lcd(t) (not involving one of the end points) occurs only
if the corresponding lines collide and if the following
inequalities are fulfilled for s = e1 or s = e2 or s = e3.

Ds(b− a, c)(t) < Ds(b, a)(t) < Ds(b− a,d)(t)
∧ Ds(d− c, a)(t) < Ds(d, c)(t) < Ds(d− c,b)(t)
∨ Ds(b− a, c)(t) > Ds(b, a)(t) > Ds(b− a,d)(t)
∧ Ds(d− c, a)(t) > Ds(d, c)(t) > Ds(d− c,b)(t)

with the abbreviation

Ds(u,v)(t) = det[s,u(t),v(t)]

We want to examine the first inequality in the first row.
Substitution of the motion equation for the points yields:

sT (R1(t)(b− a) × (R2(t)c + o2(t))
+R1(t)(a × b) + o1(t)×R1(t)(b− a)) < 0

4.4 Collision of a point and a plane

Since all points of a moving plane H(t) =
{x |n(t)Tx = n0(t)} fulfill equation (1), the normal vec-
tor n(t) and the parameter n0(t) change as follows:

n(t) = Ri(t)n
n0(t) = n0 + oi(t)Tn(t)

If a point a(t) hits the plane H(t) it holds:

n(t)Ta(t) = n0(t) ⇐⇒
nTR2(t)TR1(t)a + nTR2(t)T (o1(t)− o2(t)) = n0

4.5 Collision of a point and a triangle

A moving point a(t) hits the interior of a moving
triangle ∆bcd(t), if it collides with the supporting plane
Hn : nTx = n0 of this triangle.

n = b× c + c× d + d× b
n0 = bT (c× d)

For s = e1 or s = e2 or s = e3 the following inequalities
must additionally hold:

Ds(d,b)(t) > Ds(a,b − d)(t) > Ds(c,b− d)(t)
∧ Ds(d, c)(t) < Ds(a, c− d)(t) < Ds(b, c− d)(t)
∨ Ds(d,b(t)) < Ds(a,b − d)(t) < Ds(c,b− d)(t)
∧ Ds(d, c)(t) > Ds(a, c− d)(t) > Ds(b, c− d)(t)

4.6 Collision of a point and a line

A moving point a(t) collides with a moving line Lcd(t)
iff

u1(t)2 + u2(t)2 + u3(t)2 = 0
u(t) = (d(t) − c(t))× a(t) + c(t)× d(t)

4.7 Collision of a point and a line segment

A moving point a(t) collides with a moving line seg-
ment lcd(t) if it collides with the line Lcd(t) and the
following conditions hold:

c1(t) < a1(t) < d1(t) ∨ c1(t) > a1(t) > d1(t)
∨ c2(t) < a2(t) < d2(t) ∨ c2(t) > a2(t) > d2(t)
∨ c3(t) < a3(t) < d3(t) ∨ c3(t) > a3(t) > d3(t)

4.8 Collision of two points

Two moving points a(t) and b(t) collide iff

u1(t)2 + u2(t)2 + u3(t)2 = 0
u(t) = b(t)− a(t)

4

5 Existence of real roots of a polynomial
satisfying several polynomial inequal-
ities

Wanted:

#{t ∈ IR | f(t) = 0 ∧ g1(t) > 0 ∧ . . . ∧ gl(t) > 0},
where f(t), gi(t) are polynomials

Zf = {t ∈ IR | f(t) = 0} denotes the set of real roots
of polynomial f and χg(t) the characteristic function of
the predicate [g1(t) > 0 ∧ . . . ∧ gl(t) > 0]. It holds:

#{t ∈ IR | f(t) = 0 ∧ g1(t) > 0 ∧ . . . ∧ gl(t) > 0}
=
∑
t∈Zf

χg(t)

χg(t) can be expressed as follows

χg(t) = 2−l
l∏
i=1

(1 + sgn gi(t))

= 2−l
∑

I∈2{1,...,l}

∏
i∈I

sgn gi(t)

This implies, that∑
t∈Zf

χg(t) = 2−l
∑

I∈2{1,...,l}

∑
t∈Zf

∏
i∈I

sgn gi(t)

= 2−l
∑

I∈2{1,...,l}

(
#{t ∈ Zf |gI(t) > 0}

−#{t ∈ Zf |gI(t) < 0}
)

where gI(t) =
∏
i∈I

gi(t) and g∅(t) = 1.

This method for the calculation of #{t ∈ IR | f(t) =
0 ∧ g1(t) > 0 ∧ . . . ∧ gl(t) > 0} goes back to [5]. In this
way the original problem is reduced to the calculation of
the number of real roots of f(t), which satisfy a single
polynomial inequality [g(t) > 0].

6 Hermite’s method for the calculation
of #{t ∈ IR | f(t) = 0 ∧ g(t) > 0}

Let us consider two polynomials

f(t) = u0t
n + u1t

n−1 + . . .+ un and
g(t) = v0t

m + v1t
m−1 + . . .+ vm

Let λ1, . . . , λn denote the roots of f(t) and sk the
Newton sum

∑n
i=1 λ

k
i . In addition we define hk =

∑n
i=1 g(λi)λki . Since sk and hk are symmetrical poly-

nomials in λ1, . . . , λn they can be expressed as rational
functions in the coefficients of f and g. It holds:

sk =



n for k = 0
−u1

u0
for k = 1

−u1sk−1 + . . .+ uk−1s1 + kuk
u0

for 2 ≤ k ≤ n

−u1sk−1 + u2sk−2 + . . .+ unsk−n
u0

for k > n

hk = v0sk+m + v1sk+m−1 + . . .+ vmsk

In the following the two Hankel matrices S and H play
a decisive role. They are composed of the values sk and
hk.

S = [si+j]
n−1
i,j=0 =


s0 s1 s2 . . . sn−1

s1 s2 s3 . . . sn
...

...
...

...
sn−1 sn sn+1 . . . s2n−2


H = [hi+j]

n−1
i,j=0

Let Si (and analogous Hi)

Si = det


s0 s1 . . . si−1

s1 s2 . . . si
...

...
...

si−1 si . . . s2i−2

 .
The following theorems hold:

Theorem 2 (Jacobi) The number of distinct roots of
f(t) equals the rank r of matrix S and the number of
distinct real roots equals r−2V (1, S1, S2, . . . , Sr), where
the function V (.) counts the number of sign changes of
a sequence.

Theorem 3 (Hermite,Sylvester) The number of
distinct real roots of f(t) satisfying the condition g(t) >
0 equals r− V (1, S1, S2, . . . , Sr)−V (1, H1, H2, . . . , Hr).

If there are no degeneracies the rank r equals n. If
one of the sequences S1, . . . , Sr respectively H1, . . . , Hr

contains zeros, the rule of Frobenius (see [3]) can be
applied.
Si and Hi are rational functions in the coefficients

of f and g with denominators u2i−2
0 and u2i+m−2

0

respectively. The degree of their numerator fulfills:
deg(numer(Si)) = 2i − 2 and deg(numer(Hi)) = 2i +
m− 2. Especially it holds (see [7]):

Sn = D(f)/u2n−2
0

Hn = R(f, g)D(f)/u2n+m−2
0

5

where R(f, g) denotes the resultant of f and g and
D(f) = (−1)n(n−1)/2R(f, f ′) the discriminant of f . It
holds:

R(f, g) = det



u0 u1 . . . un
u0 u1 . . . un

.
u0 u1 . . . un

v0 v1 . . . vm
v0 v1 . . . vm

.
v0 v1 . . . vm



← 1

...
← m
← m+ 1

...
← m+ n

7 Linearization

Si and Hi are rational functions of the coefficients of
f and g. Si can be expressed as follows:

Si =
∑

ν1,...,νn∑
νj=2i−2

α(i)
ν1,...,νn

n∏
j=1

u
νj
j /u

2i−2
0

Since we are only interested in sign(Si) it suffices to
examine the numerator numer(Si) because u2i−2

0 > 0.
The coefficients uj can be rewritten as linear func-

tions in d variables x1, . . . , xd which uniquely specify
the corresponding object. We call these the linearized
coordinates of the object (E.g. for a sphere with center a
and radius a0 we set xi = ai (i = 1, . . . , 3), x4 = a0 and
x5 = a2

0 + a2. For a line we use its Plücker coordinates.)

uj(x1, . . . , xd) =
d∑
k=1

γjkxk

This substitution transforms the numerator of Si into
the following form.

numer(Si) =
∑

µ1,...,µd∑
µk=2i−2

ζ(i)
µ1,...,µd

d∏
k=1

xµkk

If we introduce a new variable yj for each product of the
form

∏d
k=1 x

µk
k with

∑d
k=1 µk = 2i−2 we get a linearized

expression for numer(Si) with at most
(

2i−d−3
d−1

)
terms.

(2i−d−3
d−1)∑
j=1

ζjyj

Analogously we get a linearized expression for
numer(Hi) with at most

(
2i+m−d−3

d−1

)
terms.

(2i+m−d−3
d−1)∑
j=1

ξjzj

where zj is of the form
∏d
k=1 x

µk
k with

∑d
k=1 µk = 2i+

m− 2.

Whether the predicate [#{t ∈ Zf |g1(t) > 0 ∧ · · · ∧
ql(t) > 0} > 0] is true or not only depends on the signs of
the expressions Si and Hi(gI) for I ∈ 2{1,...,l}. Therefore
we can write it as a {0, 1}-valued function P (.) of these
signs. I.e. we can arrange all possible sign values for Si
and Hi(gI) in a function table with n2l input columns.
If we express the function value in disjunctive normal
form we get

#{t ∈ Zf |g1(t) > 0 ∧ · · · ∧ gl(t) > 0} > 0

⇐⇒
∨

ε∈{−1,0,1}n2l

P (ε)
n2l∧
j=1

sign(Xj) = εj

where each Xj corresponds to numer(Si) or
numer(Hi(gI)).

Lemma 1 We get a linearization of dimension dim =(
2n+m+d−3

d−1

)
consisting of dis = O(3n2l) disjunctions

and con = O(n2l) conjunctions. Thereby n denotes the
degree of the polynomial f , l the number of inequalities
gi, m the maximal degree of all polynomials gI , and d
the number of the linearized coordinates of the involved
objects.

8 Summary

In our model of computation we only assume that the
basic arithmetic operations +, −, and ∗ can be done in
constant time. For a given problem instance the terms
dim, dis and con are constants. Therefore we can com-
bine Lemma 1 with Theorem 1 and get the following
result.

Theorem 4 The collision detection problem for two
polyhedra or molecules, whose trajectories are described
by polynomials, can be solved in subquadratic time.

A Appendix

A.1 Orientations Described by Quater-
nions

The orientation of a rigid body in 3-space can be
described by a quaternion

=
[
r0

r

]
∈ IR4.

6

This orientation results from a rotation of the world
frame about the axis with direction r ∈ IR3. The ro-
tation angle is determined by |r| and the scalar r0.

The 0-th component of a quaternion is called the
scalar part, the other components comprise the vector
part. Vectors in 3-space are interpreted as quaternions
with scalar part 0. Quaternions form a vector space with
an associative multiplication defined by

· =
[
q0

q

]
·
[
p0

p

]
=
[

q0p0 − qTp
q0p + p0q + q× p

]
.

The quaternion product is linear in and . The conju-
gate quaternion ∗ of is formed by negating the vector
part of . The product · ∗ yields the scalar value
q2
0 + q2, which corresponds to the length of under

the Euclidean metric in IR4. Quaternions which sat-
isfy · ∗ = 1 are called unit quaternions. Let be a
given quaternion. Then the mapping

=
[

0
a

]
→ ′ =

[
0
a′

]
=
· · ∗
· ∗

describes a rotation of the vector a about the axis r
about the angle ϕ = 2 arctan(|r|/r0). In matrix nota-
tion, this amounts to a′ = R() · a, with

R() =
(r2

0 − r2)I + 2rrT + 2r0r×

r2
0 + r2

. (3)

Here, r× denotes the canonical skew-symmetric matrix
corresponding to r. It can be easily verified that R() ·
R()T = I and det(R()) = 1.

Suppose the orientation (t) of a rigid body depends
on a time parameter t in the following way

(t) = + t(−) for t ∈ [0, 1].

The motion of the body induced by this varying orien-
tation is a simple rotation about an axis the direction
of which is given by the vector part of the quaternion
product of · ∗. This axis of rotation can be determined
by calculating the instantaneous angular velocity ω(t) of
the vector a(t) = R((t)) · a.

da(t)
dt

= ω(t)× a(t) = ω×(t) · a(t),

=
dR(t)
dt

· a = ω×(t)R(t) · a

This implies that

ω×(t) =
dR(t)
dt

·R(t)T .

It turns out that the direction of ω(t) is time invariable
and only its magnitude changes with time.

References

[1] M. Ben-Or, D. Kozen, and J. Reif: The complexity
of elementary algebra and geometry, J. Comp. and
Sys. Sci., Vol. 32: 251–264, (1986)

[2] J. Canny: An improved sign determination algo-
rithm, AAECC-91 (1991), New Orleans

[3] F.R. Gantmacher: The Theory of Matrices,
Chelsea, New York, (1959)

[4] M. van Kreveld: New Results on Data Structures in
Computational Geometry, Ph.D. Thesis, University
of Utrecht, The Netherlands, (1992)

[5] P. Pedersen: Counting real zeros, New York Uni-
versity, NYU Technical Report 545-R243, (1991)

[6] E. Schömer and C. Thiel: Efficient collision detec-
tion for moving polyhedra, Proc. 11th Annu. ACM
Sympos. Comput. Geom.: 51–60, (1995)

[7] A. Y. Uteshev and S. G. Shulyak: Hermite’s method
of seperation of solutions of systems of algebraic
equations and its applications, Linear Algebra and
its Applications 177: 49–88, (1992)

7

