
A FRAMEWORK FOR COLLISION DETECTION AND RESPONSE

C. Lennerz, E. Schömer, T. Warken
Computer Science Department

Saarland University
P.O.Box 151150

D-66041 Saarbrücken, Germany
http://www-hotz.cs.uni-sb.de/silvia/silvia.html

ABSTRACT

Detecting collisions and calculating physically correct col-
lision responses play an important role when simulating
the dynamics of colliding rigid bodies. Virtual reality ap-
plications such as virtual assembly planning and ergonomy
studies can especially profit from advances in these di-
rections, because they enable an interactive and intuitive
manipulation of objects in virtual environments. This pa-
per presents new algorithms for the real-time simulation
of multi-body systems with unilateral contacts. The al-
gorithms for dynamic collision detection and for the cal-
culation of contact forces are part of the software library
SiLVIA, a simulation library for virtual reality applica-
tions.

1 INTRODUCTION

Virtual reality techniques are becoming more and more
attractive to engineers, who design complex mechanical
systems. This trend is supported by an intensified ap-
plication of virtual prototyping. The construction of vir-
tual prototypes simplifies the whole design process and
is a prerequisite for VR-based assembly planning. In or-
der to interactively simulate an assembly of mechanical
parts the simulation software must be able to detect colli-
sions and calculate reaction forces efficiently. This enables
the assembly engineer to intuitively manipulate all objects
in spite of missing force feedback mechanisms. Figure 1
demonstrates the principle:

Figure 1: The insertion of a bolt into a countersunk hole.

The manual insertion of a bolt into a hole is a diffi-
cult task in a virtual environment, if the motion simply
stops as soon as a collision occurs. In reality the bolt au-
tomatically slides into the right direction when it comes
into contact with the conical boundary of the hole. It is
desirable to simulate this effect in order to perform vir-
tual fitting operations in a more intuitive manner. A more
elaborate example can be found in figure 3.

Our paper is organized as follows: After a short re-
view of some previous work, we start with explaining the
structure of our software library SiLVIA. It includes a col-
lection of algorithms providing a broad basis for the real-

time simulation of colliding rigid bodies in virtual envi-
ronments. Sections 2.1 and 2.2 sketch the data structures
necessary for an efficient implementation of our algorithms
for collision detection and distance calculation. Both are
described in section 2.3 and 2.4, respectively. In section 3
we describe the mathematical approach we use to deter-
mine the reaction forces for colliding bodies. We evaluate
our concepts by simulating the fitting of a screwdriver
into a crosshead screw. We conclude with some remarks
on further research.

1.1 Related Work

There is an extensive literature dealing with interference
and distance calculations for polygonal models. The sim-
plest method to detect collisions consists in examining all
objects for overlap at discrete points in time during the
motion sequence. This method is called static collision
detection. It has a serious drawback: the existence of col-
lisions has to be checked at very short intervals, so that
objects cannot unnoticedly ”tunnel” through each other.
In contrast to this method, the dynamic collision detection
actually considers the continuous motion of the objects.
For a moving and a stationary object this means, that not
the moving object itself but its swept volume is intersected
with the stationary object. In spite of the increased cost
of the dynamic approach in comparison to the static one,
the dynamic version admits a larger step-size without the
risk to miss collisions.

A further method to avoid collisions between two mov-
ing objects is the following: calculate the shortest distance
between both objects and test whether both objects can
travel this distance during the given time interval. Of
course this decision depends on the velocities of the ob-
jects [CK86, Hub95]. The period of time during which
the objects can move unrestrictedly can be easily deter-
mined, if an upper bound of the velocities is known in
advance. When this time has elapsed, the distance has to
be calculated anew. This method works very well unless
the objects approach too much. The smaller the distance
becomes, the more often it has to be updated.

The basics for all collision and distance calculations are
the elementary tests whether two surface patches inter-
sect (during their motion) and the determination of their
minimal distance respectively. Since objects are often de-
scribed by thousands of surface patches, it is very ineffi-
cient to compare all faces of one object with all faces of
a second object. By wrapping objects in preferably small
and simply shaped envelopes an overlap of the envelopes
(and thus of the objects themselves) can be excluded in
many cases and a lower bound of their distance can be ob-
tained. These envelopes, which are also called bounding
volumes, can be spheres [Qui94, PG95, Hub96], spheri-
cal shells [KPLM98], axis aligned boxes [ZF95], oriented
boxes [GLM96] or fixed-directions hulls [HKM+96, Zac98].

For reasons of simplicity virtual objects are often mod-
elled as rigid bodies, which are not subject to any defor-

mations when they collide. A popular method to cal-
culate the forces acting during a collision consists in us-
ing springs. If two objects are going to interpenetrate, a
spring force depending on the penetration depth pushes
them apart. Physically more correct models for the de-
termination of contact forces use a complementarity for-
mulation, which reflects the unilateral nature of the con-
tacts [Löt82, Bar94, BS98, SS98]. These methods are well
suited to cope with situations in which the bodies mutu-
ally touch at many contact points. Even the considera-
tion of friction is possible. An alternative method, called
impulse-based simulation [Mir96], also takes plastic and
elastic impacts between the bodies into account. It pro-
vides a very accurate and consistent model for the phys-
ical process of collision, but is confined to single contact
problems.

1.2 What is New?

Our intention is to provide an open and extendable soft-
ware library for the real-time simulation of multi-body
systems with unilateral contacts. We use self-developed
algorithms as well as known results from the fields of
computational geometry and computational mechanics in
order to obtain efficient and robust implementations for
collision detection and collision response. From the algo-
rithmic point of view our main contributions are:

- a dynamic version of collision detection. It can han-
dle virtual scenarios of moderate size at interactive
rates and does not fail when dealing with degenerate
geometric configurations, which are especially error-
prone, but often arise in fitting simulations.

- a distance calculation algorithm permitting collision
detection for non-interactive simulations. In the course
of the algorithm the proximity information is continu-
ously improved so that a lower bound of distance can
be provided when its execution is suspended.

- a new method for the determination of contact forces,
which is based on a complementarity formulation. In
contrast to [Bar94] the contact forces and the contact
distances are the complementary variables and not any
derivatives thereof. This avoids an accumulation of
numerical inaccuracies and ensures that the geometric
contact conditions are satisfied quite exactly.

2 THE ARCHITECTURE OF SIlVIA

Our fundamental data structure to represent the bound-
ary of an object follows the ACIS r© specification, which
clearly distinguishes between the topological and the geo-
metric entities of an object. The basic topological entities
are vertices, edges and faces which are geometrically em-
bedded on points, lines and planes. The explicit represen-
tation of all adjacencies between the topological entities
is important for the robust treatment of degenerate geo-
metric cases.

This kernel is encapsulated by a module for hierarchi-
cal bounding volumes and one for object culling. The use
of both techniques is indispensable in order to efficiently
handle complex objects and scenes with many objects.

The next level of functionality comprises algorithms for
efficient collision detection, distance calculation and some
typical CAD operations. Detecting collisions and calcu-
lating distances between pairs of moving objects are es-
sential for all subsequent mechanical simulations because
they provide the necessary geometric information about
the admissible spatial positions and orientations of the

ACIS
data

structure

C
ol

lis
io

n
de

tec
tio

n Distance calculation

Typical CAD operations

Hierarchical

bo
un

ding volum
es

Space partitioning

Impulse-based simulation

Constraint-based simulation

Figure 2: The structure of SiLVIA.

bodies involved. The two major criteria these algorithms
have to fulfil are efficiency and robustness.

The main purpose of the SiLVIA library is to supply
procedures to simulate the dynamics of rigid bodies and to
interactively manipulate these bodies in virtual environ-
ments. In order to achieve a realistic object behaviour, we
use constraint- and impulse-based simulation techniques
[Mir96]. Thereby we focus on unilateral contacts between
colliding rigid bodies. The whole concept is illustrated in
figure 2.

2.1 Object Culling

In order to reduce the computational effort spent on colli-
sion detection and distance calculation, object culling tries
to quickly remove most object pairs from consideration.

Depending on the application (static or dynamic colli-
sion detection/distance calculation) we compute an axis-
aligned box for every object wrapping it at a single instant
in time or over a time interval. Obviously we have to con-
sider only the pairs with intersecting bounding volumes
for pairwise collision detection.

SiLVIA provides two alternative methods. The first
one is based on space partitioning and tries to find possi-
ble intersections among boxes in space using a hierarchical
hashing table. The basic technique was first presented in
[Ove92] and then modified in [Mir96] to exploit coherence
between moving objects. The second method uses coordi-
nate sorting to find all intersections between the boxes.

2.2 Hierarchical Bounding Volumes

On top of the ACIS r© kernel, we built a data structure that
allows collision detection and distance calculation queries
following divide-and-conquer strategies. The collision de-
tection and distance computation problem can be reduced
to the problem of finding an intersection and the smallest
distance among all faces of both objects, respectively. In
order to prevent the consideration of all face pairs, we use
a binary tree of bounding volumes covering a hierarchical
decomposition of the object.

The root of the tree is associated with the full face set
and every inner node corresponds to a proper subset of its
parent’s faces. Thereby both children form a partition of

their parent’s face set. Consequently we speak of a leaf if
no further partitioning of the face set is possible.

So, every node represents a part of the object that
we want to approximate by a simpler shape, the so-called
bounding volume. In SiLVIA several types of bounding
volumes are available: spheres [Hub95], (arbitrarily) ori-
ented bounding boxes (OBBs) [GLM96] and fixed-direc-
tions hulls (FDHs or k-DOPs) [HKM+96], [Zac98]. Axis-
aligned bounding boxes (AABBs) are a special case of the
latter.

We build the tree in a top-down approach. In doing
so, we recursively divide the original face set by creating
”balanced” partitions and compute tight bounding vol-
umes on every tree node. The recursion terminates if no
further subdivision is possible (leaf). Partitioning pro-
ceeds as follows: We pick a splitting plane and assign ev-
ery face to the side of the plane where its reference point
lies. Thereby the splitting plane is defined by containing
the mean of all reference points and being orthogonal to
the principal axis of inertia that minimizes the sum of the
volumes of both children.

Considering the computation of the bounding volumes,
we refer to the publications mentioned above.

2.3 Collision Detection

Now that we have described the data structure as the
foundation of efficient collision detection queries, we skip
to the algorithmic part of the computation.

The collision detection algorithm is very simple and
outlined in many publications before [GLM96]. The ba-
sic idea is the following: Let v1 and v2 be nodes of the
respective object trees. If the face sets F1 and F2 associ-
ated with v1 and v2 intersect, then the bounding volumes
of F1 and F2 do intersect as well. If we negate this state-
ment, we obtain the following rejection test: whenever the
bounding volumes of F1 and F2 do not intersect, the cov-
ered face sets must be separated as well. In the case of
intersection we have to check if v1 and v2 are both leaves.
If neither v1 nor v2 has children, we apply an elementary
collision test to all face pairs associated with v1 and v2.
Otherwise we divide the problem and ask if any pair of
children of v1 and v2 do intersect.

The termination condition depends on the desired in-
formation. So as to learn if the objects intersect, we only
have to find a single leaf pair for which the elementary
test indicates an intersection. Are we interested in ob-
taining all intersecting features though, we have to check
all leaf pairs that cannot be excluded by bounding volume
rejection tests.

For the elementary collision test between face pairs
we use a dynamic method. First we observe that there
are only two types of collisions between polyhedral ob-
jects: vertex-face and edge-edge collision. Vertex-edge
and vertex-vertex collisions can be seen as special cases
of these two types. Given a face pair our algorithm for
the elementary test proceeds as follows. Each vertex of
the first face is tested for collision with the second face
and vice versa. Then each edge of the first face is tested
against each edge of the second face. We want to give a
short description of the two methods used for these two
types of tests.

Vertex-face collision Given a vertex v and an oriented
face F that lies in the plane with the equation nTx = n0

we define the signed distance between v and F as d =
nTv − n0. We denote the current coordinates of the ver-
tex as vt and the desired coordinates as vt+∆t (also for
n and n0) and compute the corresponding distances dt

and dt+∆t. In contrast to a static collision detection al-
gorithm which would only take the desired coordinates
under consideration we interpolate the distance linearly:
d(t) = dt + t/∆t · (dt+∆t − dt). In the case dt > dt+∆t we
compute tc = ∆tdt/(dt− dt+∆t). If dt ≤ dt+∆t the vertex
moves parallel to or away from the face or comes from the
“wrong” side (dt < 0). tc is the time of collision between
v and the plane in which F lies. If tc < 0 or tc > ∆t there
is no collision during the desired movement. Otherwise
we have to check whether v will lie in F at time tc or not.
In order to obtain the coordinates of v and F at this time
we interpolate the position and orientation parameters of
both objects linearly. For reasons of stability we do not
check whether v will lie exactly in F but in the prism
defined by F and its normal n.

Edge-edge collision Now we are given two edges e1 and
e2 with endpoints a1, b1 and a2,b2, respectively. Let g1

and g2 be the lines in which e1 and e2 lie. Let furthermore
F be a face adjacent to e2 and assume that F lies in the
plane with the equation nTx = n0. We cannot define a
signed distance between the edges as we did in the vertex-
face case. But we observe that e1 and e2 cannot collide if
both endpoints of e1 are always on the same side of the
face F (unless e1 is always parallel to F . In this case we
interchange the roles of e1 and e2). So we determine all
maximal intervals I = [t1, t2] for which a1 and b1 lie on
different sides of F , that means such that for all t ∈ I we
have

n(t)Ta1(t)− n0(t) < 0 and
n(t)Tb1(t)− n0(t) > 0 or vice versa.

(1)

Here the time argument t means that the coordinates are
interpolated linearly. For all these intervals we do the
following. First we determine the (signed) distances d1

and d2 between the lines g1 and g2 at time t1 and t2,
respectively:

di =
det (b1 − a1, b2 − a2,a1 − a2)

|(b1 − a1)× (b2 − a2)| (2)

where a1, b1,a2, b2 are evaluated at time ti for i = 1, 2. As
in the vertex-face test we interpolate the distances linearly
and compute tc = d1/(d1 − d2). As the inequations (1)
ensure that g1 and g2 are non-parallel, tc is the time of
collision between these lines. If tc < t1 or tc > t2 there
is no collision between g1 and g2 and hence e1 and e2 do
not collide. Otherwise we have to check whether the point
of intersection lies on the edges or not. As before we use
linear interpolation to determine the positions of the edges
at time tc. For reasons of stability we do not compute
the point of intersection (because of the interpolations the
lines might not intersect exactly) but the pair of closest
points on the lines.

2.4 Distance Calculation

Measuring proximity between moving bodies plays an im-
portant role in robot motion planning and collision detec-
tion for non-interactive physical simulations [Mir96]. Dy-
namical and proximity information allow the computation
of lower bounds of the time of impact between two objects
in motion. Prioritizing object pairs according to this esti-
mation yields time intervals during which the dynamical
system can be evaluated and a collision-free movement of
the objects is guaranteed.

The fastest algorithms so far, presented in [LC91],
[Mir97], [Cam97] focus on convex objects. Non-convex

objects have to be partitioned in convex pieces, which it-
self is a non-trivial problem. The algorithm implemented
in SiLVIA does not rely on the property of convex objects.

Comparable with the collision detection algorithm de-
scribed above, we try to cull away the parts of the object
which do not contribute to find the optimal solution. We
use the hierarchy of bounding volumes to solve the dis-
tance minimization problem according to a branch-and-
bound strategy. A lower bound of the distance between
two node face sets is given by the distance between the
corresponding bounding volumes. As we try to cut off
subtrees, we also need an upper bound to which we can
compare the bounding volume distance. The upper bound
corresponds to the minimal distance computed between
two faces of both objects so far. This provides us with a
simple rejection test. If the distance between the bound-
ing volumes is not less than the current upper bound, we
can prune the respective subtrees. The elementary dis-
tance computation invoked at a leaf pair computes the
smallest distance between the respective face pairs using
efficient edge-to-edge-distance and vertex-to-face-distance
routines.

The availability of lower bounds of distance between
node pairs is exploited to create heuristic strategies de-
termining the order of the child node pairs to be visited.
We developed two dominating strategies. The first can be
characterized as a local acting greedy heuristic choosing
the child pair with minimum bounding volume distance.

The second one stores all visited node pairs, keyed
by their bounding volume distance, in a sorted sequence
structure. At every iteration we expand the node pair
with lowest key and after updating the upper bound we
cut off all pairs at the end of the sequence with key greater
or equal to the current upper bound. In comparison to the
former strategy the more global view of the latter reduces
the number of visited nodes but the sorted sequence in-
sertion costs lead to slightly higher running times.

A considerable advantage of the second heuristic is the
possibility of maintaining a lower bound of distance be-
tween the objects that is continuously improved during
the tree traversal. This is particularly important when it
comes to fulfil real-time demands. In collision detection
applications conservative estimations on distances are use-
ful when there is no time left to compute exact proximity
information. This property allows adaptiveness by assign-
ing the current available computation time to the distance
calculation routine and getting a conservative bound on
the optimal distance when the time assignment is con-
sumed.

Adaptiveness is not the only aspect our algorithm dif-
fers from related work. We do not restrict ourselves to
the usage of a particular type of bounding volumes. The
data structures and algorithms are designed with regard
to high flexibility concerning the usage of bounding vol-
umes. The distance calculation algorithm abstracts from
the underlying bounding volume type making the system
extensible. In SiLVIA we implemented lower bound com-
putations for the bounding volume types mentioned above
and evaluated the performance of the distance calculation
using different types. We observed that in most cases the
extremely fast lower bound computations between spheres
do pay for their rather worse approximation properties.

3 CALCULATION OF CONTACT FORCES

In this section we want to consider an important aspect of
the constraint-based dynamics simulation: the calculation
of the contact forces. The contact forces prevent the ob-
jects from interpenetrating at the points of collision and

influence their velocities. Let us consider a multi-body
system consisting of n rigid bodies in mutual contact at
K contact points. Suppose that body Bik touches body
Bjk at the k-th contact point pk. The interpenetration
of these bodies at pk is prevented by a pair of opposite
directed contact forces ±F k = ±fknk. In the absence of
friction F k acts in direction of the normal vector nk of the
contact plane, which is tangential to the surface of both
objects at the contact point. Let the vector rkl = pk − cl
point from the center of mass of object Bl to the k-th
contact point. The position and orientation of object Bl
are described by the vector cl and a quaternion ql. vl
and ωl specify the linear and angular velocity of body Bl
and ml and Il denote its mass and its inertia matrix. If
Bl is fixed in space, then we set vl = ωl = 0 and ml =∞
and Il = ∞E, where E ∈ IR3×3 is the identity matrix. If
Bl is interactively moved we interpret the user’s input as
velocities and set vl and ωl appropriately.

The generalized Newton-Euler equations of motion for
the objects Bl are:

ċl = vl, q̇l =
1

2
ωlql,

v̇l = m−1
l

∑
{k|jk=l}

F k −m−1
l

∑
{k|ik=l}

F k + g,

ω̇l = I−1
l

∑
{k|jk=l}

rkl×F k

− I−1
l

∑
{k|ik=l}

rkl×F k − I−1
l ωl × Ilωl

Our objective is to determine the constraint-forces F k for
k = 1, . . . ,K. To give up the component-wise description
the following vectors and matrices are quite useful: the
generalized velocity vector u = [v1,ω1, . . . ,vn,ωn]T ∈
IR6n, the generalized position vector s = [c1, q1, . . . , cn,
qn]T ∈ IR7n, the vector of the magnitudes of the contact
forces f = [f1, f2, . . . , fK]T ∈ IRK , the vector of external
forces f ext= [m1g,−ω1×I1ω1, . . . , mng,−ωn×Inωn]T ∈
IR6n, the matrix

S = diag(E,Q1, . . . ,E,Qn) ∈ IR7n×6n

where Ql ∈ IR4×3 imitates the quaternion product
1
2
ωlql = Qlωl, the generalized mass matrix

M = diag(m1E, I1, . . . ,mnE, In) ∈ IR6n×6n

and the matrix of contact conditions C ∈ IR6n×K . The
transposed matrix CT has the following structure indi-
cated by its k-th row:

2ik−1 2ik 2jk−1 2jk

↓ ↓ ↓ ↓[
0 . . . 0 −nk −nk×rkik 0 . . . 0 nk nk×rkjk 0 . . .0

]
Using this notation, the equations of motion can be formu-
lated in their continuous and discretized (Euler-scheme)
version:

ṡ = Su

u̇ = M−1(Cf + f ext)

⇒ st+∆t = st + ∆tSut+∆t (3)

ut+∆t = ut + ∆tM−1(Cf + f ext) (4)

Now we define the function δ : IR7n → IRK that computes
the contact distances δ(s) = [δ1, . . . , δK]T for the gener-
alized position vector s. Then δk is the distance between

the parts of the objects involved in the k-th (potential)
contact. Note, that δ is non-linear.

Finally, we need the function σ : IRK → IR7n taking
the magnitudes of the contact forces as arguments and
computing the configuration st+∆t. We obtain σ by in-
serting equation (4) into equation (3):

σ(f) = st + ∆tS(ut + ∆tM−1(Cf + f ext))

3.1 A Naive Method

If we assume that all contacts are bilateral, the condition

δ (σ(f)) = 0 (5)

with 0 = [0, . . . , 0]T ∈ IRK must hold. This is a non-
linear equation system with the contact forces as unknown
quantities. E.g. it can be solved by the Newton-Raphson
method, which requires the successive solution of a K di-
mensional linear system of equations. The number of iter-
ation steps is small because we know good start values for
f from the previous time step. Since the contacts are not
really bilateral, we release the k-th contact if fk becomes
negative.

3.2 Reduction to a System of Equations

Now suppose that all contacts are unilateral. Then a dis-
advantage of the first method is that we allow negative
contact forces for one simulation step, which cause the
objects to stick together for a short time. We can avoid
this by replacing condition (5) by the complementarity
condition

δ (σ(f)) ≥ 0 compl. to f ≥ 0. (6)

Note that ‘a compl. to b’ is equivalent to aT b = 0 for
a, b ∈ IRd. Condition (6) means that we do not allow
negative distances (i.e. interpenetration) or negative (i.e.
attractive) contact forces and that at each contact point
the distance or the force must be equal to zero. In order
to solve this non-linear complementarity problem (NCP)
we use the same technique as in [BS98] and consider the
so-called Fischer function ϕ : IR2 → IR which is defined by
ϕ(a, b) =

√
a2 + b2−a−b. It is obvious that the following

holds for each a, b ∈ IR:

ϕ(a, b) = 0⇐⇒ a ≥ 0 compl. to b ≥ 0.

We define the function Φ : IR2K → IRK by

Φ(f) = [ϕ(f1, δ1(σ(f))), . . . , ϕ(fK , δK(σ(f)))]T

Now we can transform the NCP into the non-linear equa-
tion system which can again be solved by the Newton-
Raphson method.

Φ(f) = 0, (7)

In contrast to the classical method [Bar94] this approach
uses the contact distances instead of the contact accelera-
tions as variables complementary to the contact forces. In
this way the integration of the motion equations can be
performed in a stable way with respect to the geometric
constraints. The classical method however has to face the
problem that the deviations from the exact constraints
accumulate during the integration process.

Figure 3: An example for a simulation by SiLVIA.

3.3 Evaluation

By analogy with the example in the introduction we have
chosen a typical fitting operation as an evaluation exam-
ple. We designed a crosshead screw and screwdriver ac-
cording to the international norm ISO 4757 ”Cross re-
cesses for screws”. This norm specifies the measurements
and geometric tolerances for both objects and ensures that
the screwdriver correctly fits into the screw. Then we sim-
ulated the fitting and twisting process, as you can see in
figure 3. The user exerted a light pressure while twisting
the screwdriver, which automatically found its way into
the proper position as soon as the first contact was es-
tablished. Although the scene only consisted of circa 200
polygons, the resulting geometric contact configurations
were quite complex. Up to 20 mutual contacts between
the screwdriver, the screw and the underlying block were
nothing unusual.

Although a strict proof of the convergence of the ap-
proaches presented in section 3.2 is still missing the em-
pirical results indicate that the methods behave well in
spite of large time steps.

4 CONCLUSIONS AND FURTHER RESEARCH

A simulation system for interactive virtual assembly plan-
ning should provide different levels of abstraction from the
real physical laws: At the base level all objects are treated
as rigid bodies, which are forbidden to penetrate each
other. The next level comprises the modelling of kine-
matic constraints, represented by bilateral and unilateral
contacts. Based upon that the dynamics of the system
of rigid bodies can be simulated, i. e. inertial and grav-
itational forces, contact forces, and interactively exerted
forces and torques come into play. A further step is the
modelling of plastic and elastic impacts still assuming the
rigidity of the bodies. The next major step to improve the
physical model is the integration of friction. But an even
more subtle point is the modelling of deformable objects.

In this paper we presented some first steps on the long
way to attain these ends.

BIOGRAPHY

Elmar Schömer is a research assistant at the computer sci-
ence department of Saarland University where he received
his doctorate in computer science in 1994. His fields of
research include computational geometry and computa-
tional mechanics. He is currently working on algorithms
for interactive virtual assembly planning in cooperation
with the Virtual Reality Competence Center of Daimler-
Chrysler.

REFERENCES

[Bar94] D. Baraff. Fast contact force computation for
nonpenetrating rigid bodies. In SIGGRAPH,
pages 174–203, July 1994.

[BS98] M. Buck and E. Schömer. Interactive rigid
body manipulation with obstacle contacts.
In 6th Int. Conference in Central Europe
on Computer Graphics and Visualization,
WSCG’98, pages 49–56, 1998.

[Cam97] S. Cameron. Enhancing GJK: Comput-
ing minimum and penetration distances be-
tween convex polyhedra. In IEEE Int. Conf.
Robotics and Automation, 1997.

[CK86] R.K. Culley and K.G. Kempf. A collision de-
tection algorithm based on velocity and dis-
tance bounds. In IEEE International Confer-
ence of Robotics and Automation, pages 1064–
1068, 1986.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha.
OBB-tree: A hierarchical structure for rapid
interference detection. Computer Graphics,
pages 171–180, August 1996. Proc. SIG-
GRAPH’96.

[HKM+96] M. Held, J. T. Klosowski, J. S. B. Mitchell,
H. Sowizraland, and K. Zirkan. Efficicient col-
lision detection using bounding volume hierar-
chies of k-DOPs. In ACM SIGGRAPH’96 Vi-
sual Proceedings New Orleans, August 1996.

[Hub95] P. M. Hubbard. Collision detection for in-
teractive graphics applications. IEEE Trans.
on Visual. and Comput. Graph., 1(3):218–230,
September 1995.

[Hub96] P. M. Hubbard. Approximating polyhedra
with spheres for time-critical collision de-
tection. ACM Transactions on Graphics,
15(3):179–210, July 1996.

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and
D. Manocha. Spherical shells: A higher order
bounding volume for fast proximity queries.
In Proc. 1998 Workshop Algorithmic Found.
Robot., 1998.

[LC91] M. C. Lin and J. F. Canny. Efficient algo-
rithms for incremental distance computation.
In Proc. IEEE Internat. Conf. Robot. Autom.,
volume 2, pages 1008–1014, 1991.

[Löt82] P. Lötstedt. Mechanical systems of rigid bod-
ies subject to unilateral constraints. SIAM
Journal of Applied Mathematics, 42(2):281–
296, 1982.

[Mir96] B. Mirtich. Impulse-based dynamic simulation
of rigid body systems. PhD thesis, University
of California, Berkeley, 1996.

[Mir97] B. Mirtich. V-Clip: Fast and robust poly-
hedral collision detection. Technical Report
TR97-05, MERL, 201 Broadway, Cambridge,
MA 02139, USA, 1997.

[Ove92] M. H. Overmars. Point location in fat sub-
divisions. Inform. Process. Lett., 44:261–265,
1992.

[PG95] I.J. Palmer and R.L. Grimsdale. Collision de-
tection for animation using sphere-trees. Proc.
Eurographics, 14(2):105–116, 1995.

[Qui94] S. Quinlan. Efficient distance computation be-
tween non-convex objects. In Proc. Int. Conf.
on Robotics and Automation, pages 3324–
3329, 1994.

[SS98] J. Sauer and E. Schömer. A constraint-based
approach to rigid body dynamics for virtual
reality applications. In Proc. ACM Sympo-
sium on Virtual Reality Software and Tech-
nology, pages 153–161, 1998.

[Zac98] G. Zachmann. Rapid collision detection by
dynamically aligned DOP-trees. In Proc. of
IEEE, VRAIS’98 Atlanta, March 1998.

[ZF95] G. Zachmann and W. Felger. The BoxTree:
Enabling real time and exact collision detec-
tion of arbitrary polyhedra. In 1st Workshop
on Simulation and Interaction in Virtual En-
vironments, pages 104–113, 1995.

