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Abstract

In this paper we consider the following problem: given
two general polyhedra of complexity n, one of which is
moving translationally or rotating about a fixed axis,
determine the first collision (if any) between them. We
present an algorithm with running time O(n8/5+ε) for
the case of translational movements and running time
O(n5/3+ε) for rotational movements, where ε is an ar-
bitrary positive constant. This is the first known algo-
rithm with sub-quadratic running time.

1 Introduction

The demands on quality, security and higher production
capacity in manufacturing increase the need for plan-
ning during the phase of product design. To find poten-
tial faults in the design as soon as possible one uses sim-
ulation programs: these predict the physical properties
and reactions of the product and check whether particu-
lar prefabricated parts can be easily assembled. For the
latter purpose, the simulation of assemblies and robots,
efficient methods for collision detection are needed. In
general collision detection is an essential prerequisite of
simulations of mechanical tools.

Regarding the significance of this problem we consider
in our paper efficient algorithms for collision detection.
It is known ([Bo79, Ca84]) that in IR3 a collision be-
tween a moving polyhedral object and a stationary ob-
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stacle is computable in time O(n2). Here, n denotes the
complexity of the two objects, i.e. the number of ver-
tices, edges and faces. We attempt to solve this prob-
lem in sub-quadratic time. Our results are justified by
the following model: Objects are rigid bodies (polyhe-
dra) in IR3, their surfaces consist of planar faces with
straight boundaries. An object may be moving transla-
tionally in an arbitrary direction or it may be rotating
about an arbitrary axis. These restrictions are based
on the fact that real objects can be easily modelled by
polyhedra and every motion can be approximated by a
sequence of translations and rotations. As our model
of computation we take the standard Real-RAM-model
([PS88]).

1.1 Previous results

There are (up to now) only efficient solutions for some
special cases of translated polyhedra. Dobkin and
Kirkpatrick demonstrate in [DK85, DK90] the effi-
ciency of the hierarchical representation for solving
distance problems between convex polyhedra: using
this data structure one can determine the collision be-
tween two convex polyhedra in time O(log2 n). If one
of the objects is not convex, an algorithm with run-
ning time O(n logn) is possible (for more details see
[DHKS90, Sch94]). The collision between a transla-
tionally moving and a stationary c-iso-oriented poly-
hedron can be computed in time O(c2n log2 n) (see
[Sch94]). Also in this work the first sub-quadratic colli-
sion detection algorithm for two general polyhedra (one
of which is translated and one is stationary) is devel-
oped.

For the case of rotations there are no sub-quadratic
algorithms known. Even the special case of two con-
vex polyhedra, one of which is rotating has not been
solved up to now. This particular problem was posed
as an open question by Jack Snoeyink during the Third
Dagstuhl Seminar on Computational geometry in March
1993:

Given two convex polyhedra A,B, and an axis
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of rotation, compute the smallest angle by
which B has to rotate to meet A. Can this
be done in sub-quadratic time?

1.2 New results and outline

In this paper we give the first sub-quadratic algorithms,
which solve the collision problem between two general
polyhedra, one of which is moving translationally or ro-
tating about a fixed axis, whereas the other is station-
ary. In particular we get an upper bound of O(n8/5+ε)
for the translational movement and O(n5/3+ε) for the
rotational movement∗.

The first collision between two polyhedra can either
be a collision between a vertex of one polyhedron and
a facet of the other or a collision between two edges.
The former case is the simpler one and will be treated
in the last part of the paper by plane sweep techniques
(see Section 6). The latter problem is the harder prob-
lem and we concentrate on it. We show how to prepro-
cess the set of stationary segments, such that we can
efficiently compute the first segment hit by a moving
query segment. We proceed in three steps: In the first
step we use the parametric search technique of Meggido
(see [Meg83]) to reduce the problem of computing the
first intersection during the motion to the problem of
computing the total number of intersections during the
motion. In the second step we show how to reduce the
latter problem to a combination of halfspace and sim-
plex range searching problems; the key technique here
is linearization, which was for the first time suggested in
[YY85]. In the third step we solve the range searching
problems using known techniques of van Kreveld and
Matous̆ek. After that description our general technique
will be applied to the collision problem of line segments
which move translationally or rotate about a fixed axis:
in Section 4 we will deduce the needed appropriate lin-
earizations and get an upper bound of O(n5/3+ε) for
both kinds of motions. Applying a recent result of Pel-
legrini [Pel93] in Section 5 we sketch an improved solu-
tion for translationally moving edges with running time
O(n8/5+ε). Section 6 considers the collision problem for
facets and vertices.

2 General collision detection
and parametric search

Let T be a class of (topologically closed) geometric ob-
jects, i.e. closed subsets of IRd, and let S be some set of
n objects in T . Let Q be another class of (topologically
closed) geometric objects in IRd. Further let M be a
set of admissible motions for the objects in Q, i.e. in

∗Throughout this paper, ε denotes an arbitrary small positive
constant.

our case the set of all possible translations respectively
rotations.

For an object S of T and an object Q ∈ Q, which
moves according to a formula `, we denote the first time,
such that S is hit by Q, with φ(S,Q, `). If there is no
such collision we set φ(S,Q, `) = ∞. Our goal is to
build a data structure that, given a query object Q ∈ Q
and the equation ` ∈M of a motion, computes quickly
φ(S, Q, `) := minS∈S φ(S,Q, `) together with a S ∈ S
such that φ(S,Q, `) = φ(S, Q, `). We call this the on-
line collision problem for Q with respect to T .

Suppose we have an efficient algorithm As that, given
a query object Q ∈ Q and a motion ` ∈ M, decides
in Ts time, whether the moving object intersects some
objects of S within a given time period [0, t]. In our
case this time period is represented by the length of
a translation or by the angle of a rotation. We also
assume that the algorithm can detect the case when
exactly one object of S is intersected and that it can
identify this object. We call such a procedure an empti-
ness algorithm. Using this emptiness algorithm we can
easily decide if a given time t is less, equal or greater
than φ(S, Q, `). Meggido’s parametric search technique
(see [Meg83]) replaces As by a parallel algorithm Ap
that uses P processors and runs in Tp parallel time.
Then it simulates Ap generically on the unknown value
t∗ := φ(S, Q, `) and delivers an algorithm that computes
t∗ in time O(PTp + TsTp logP ).

3 The emptiness algorithm

Our strategy is to reduce the collision problem to a prob-
lem for other objects that do not move and then solve
the latter by known techniques. We will proceed in two
steps. Firstly we linearize the problem and construct a
multilevel data structure for counting all collisions (re-
spectively for testing, if there is any collision) within a
given time interval. Then we modify this algorithm and
get the emptiness algorithm needed for the parametric
search technique.

In many applications one (complicated) query prob-
lem can be expressed as the combination of several other
(easier) query problems. A general notion for the com-
position of general query problems was introduced in
[Krev92]:

Let P = {p1, p2, . . . pn} be a set of n points in IRd,
let R denote the set of all simplices in IRd, let S =
{s1, . . . , sn} be a set of n objects, and let Q denote a set
of queries on S. The composed query problem (S′,Q′)
is defined as follows: S ′ = {(pi, si)| 1 ≤ i ≤ n}, Q′ =
R × Q and the answer set for a query (R,Q) ∈ Q′ is
given by {(p, s)| (p, s) ∈ S′ and p ∈ R and s ∈ Q}. We
also say that (S′,Q′) is obtained from (S,Q) by simplex
composition.

Page 2



Simplices in d-space are the intersection of at most
d + 1 many halfspaces. Therefore we can w.l.o.g. con-
sider simplex compositions where the simplices are half-
spaces. In this case we also use the term halfspace com-
position.

3.1 General form of linearization

In this section we introduce the concept of linearization.
It allows to translate a complicated test in some low
dimensional space into a test in some higher dimensional
space but involving only linear tests. Here we want to
test whether a moving object Q, whose location at time
τ is described by Q(τ) intersects a stationary object S
in some time interval [0, t]. To find a linearization of
this problem means to establish the equivalence

[∃τ : 0 < τ < t, Q(τ) ∩ S 6= ∅] (1)

⇐⇒
dis∨
i=1

con∧
j=1

[
dim∑
k=1

δijk (Q, t) ζijk (S) ./ 0

]
,

where ./∈ {<,>,=,≤,≥}, dis, con, dim are positive
constants, and δijk (Q, t) respectively ζijk (S) are rational
functions of constant degree depending on the kind of
motion and the kind of objects.

Having such a linearization we map the objects S ∈
S into the points pij := (ζij1 (S), ζij2 (S), . . . , ζijdim(S))
in IRdim and the query object Q into the hy-
perplanes hij := (δij1 (Q, t), δij2 (Q, t), . . . , δijdim(Q, t))
in the same space. Then we can think of any∑dim
k=1 δ

ij
k (Q, t) ζijk (S) ./ 0 as the condition, that (de-

pending on ./) the point pij lies on the hyperplane hij

respectively in a halfspace bounded by hij . Because
each conjunction of (1) can be interpreted as the com-
position of con halfspace range searching problems we
can find the objects in S satisfying a particular conjunc-
tion by applying halfspace composition con times. The
disjunctions of (1) correspond to the union of ranges.
By rewriting the defining formula, we can assume that
these are disjoint unions: a formula A∨B can be rewrit-
ten as A ∨ (B ∧ ¬A). Now for counting all objects hit
by the moving query object we can just sum up the so-
lutions of the dis composed problems (defined by the
conjunctions).

In Section 4 we deduce the linearization for the col-
lision problem between a set of moving line segments
(all moving in the same direction or all rotating about
the same axis) and a set of stationary segments in IR3.
There we get constant values dis, con and dim, espe-
cially dim = 5.

3.2 The data structure

In his Ph.D. thesis [Krev92] Marc van Kreveld inves-
tigated efficient solutions for simplex composition† of
query problems:

Theorem 1 ([Krev92]) Let P be a set of n points in
dim-space, and let S be a set of n objects in correspon-
dence with P. Let T be a data structure on S having
building time p(n), size s(n) and query time q(n). For
an arbitrary small constant ε > 0, the application of
simplex composition on P to T results in a data struc-
ture D of

1. size O(nε(ndim + s(n))) and query time O(q(n) +
logn), or

2. size O(n + s(n)) and query time O(nε(n1−1/dim +
q(n))), or

3. building time O(mε(m + p(n))), size O(mε(m +
s(n)) and query time O(nε(q(n) + n/m1/dim)) for
every fixed m such that n ≤ m ≤ ndim,

assuming that s(n)/n is non-decreasing and q(n)/n is
non-increasing. Reporting takes additional O(k) time if
there are k answers.

Lemma 2 If there is a parallel query algorithm for T
running in time t(n) using P (n) processors then the
query algorithm for the last data structure can be par-
allelized such that it runs in O(t(n) + logn) parallel
steps using O(nε(P (n)+n/m1/dim)) processors, assum-
ing that P (n)/n and t(n)/n are non-increasing.

In our case we apply con halfspace compositions start-
ing with a halfspace range searching problem. There-
fore Theorem 1 leads to a data structure with build-
ing time and size O(m1+ε), which can count all ob-
jects in S satisfying a particular conjunction of (1) in
query time Ts := O( n1+ε

m1/dim ), for every fixed m such that
n ≤ m ≤ ndim. We can parallelize that query algorithm
such that it runs in Tp := O(polylog n) parallel time
with P := O( n1+ε

m1/dim ) processors. Using the parametric
search technique this gives us the first time t∗ of any col-
lision in time O(PTp+TsTp logP ) = O( n1+ε

m1/dim ). To get
the first hit object we start the corresponding reporting
algorithm satisfying the same resource bounds.

Theorem 3 The on-line collision problem with lin-
earization (1) can be solved with a data structure of
size and preprocessing time O(m1+ε) and query time
O( n1+ε

m1/dim ), for every fixed m such that n ≤ m ≤ ndim.

Assume we have n moving objects Q ∈ Q instead of
only one, and we want to determine the first collision

†Actually we use only halfspace composition
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between any pair Q, S,for Q ∈ Q and S ∈ S. We apply
the solution to the on-line problem and query the data
structure of Theorem 3 with each moving element. This
gives us a list of n candidates in which we can find the
first collision in time O(n).

Using this approach we need O(m1+ε) preprocessing
time and n × O( n1+ε

m1/dim ) query time. To find the best
time bound we have to minimize the function

c1m
1+ε + c2

n2+ε

m1/dim
,

where c1, c2 are the O-constants of the resource bounds.
This function achieves its minimum for m satisfying
c1m

1+ε = c2
n2+ε

m1/dim i. e.

m =
(
c2
c1

) dim
dimε+dim+1

n
(2+ε)dim

dimε+dim+1 = O(n
2dim
dim+1 +δ).

This proves the following result.

Corollary 4 Given a subset S of n objects from S and
a set Q of n moving objects from Q. Assume that there
is a linearization of the collision problem for Q with
respect to T in the form of (1). Then we can find in
O(n

2dim
dim+1 +ε) time the first collision between any ele-

ments of Q and S.

Corollary 5 Given two polyhedra of complexity n, one
of which is moving translationally respectively is rotating
about a fixed axis. The first collision between any two
edges of them can be computed in time O(n5/3+ε).

4 Collision of translationally or
rotationally moving line seg-
ments

Formulation of the problem:
Given: Two line segments lab and lcd with endpoints a,
b and c, d. The line segment lab(τ) performs a transla-
tion in the direction of the positive x3–axis or a counter-
clockwise rotation about the x3–axis, from time τ = 0
to τ = t.
Wanted: Linear conditions to describe the fact that
there is a time τ , 0 < τ < t, such that lab(τ) and lcd
intersect.

In this section we show the following result: For a
translational as well as for a rotational motion there ex-
ist natural numbers dis, con, dim, so that the following
holds:

[∃τ : 0 < τ < t, lab(τ) ∩ lcd 6= ∅]

⇐⇒
dis∨
i=1

con∧
j=1

[
dim∑
k=1

ζijk (c,d) δijk (a,b, t)<> 0

]
,

where ζijk (c,d) is a polynomial in the coordinates of
c and d and δijk (a,b, t) is a polynomial in t and the
coordinates of a and b. These polynomials depend on
the kind of motion.

Let Lab and Lcd be the lines that contain the segments
lab and lcd respectively. Let T = {τ |Lab(τ) ∩Lcd 6= ∅}.
Then

[∃τ : 0 < τ < t, lab(τ) ∩ lcd 6= ∅]
⇐⇒ [∃τ ∈ T : 0 < τ < t ∧ lab(τ) ∩ lcd 6= ∅].

4.1 Plücker coordinates for lines in IR3

If Lab ∩ Lcd 6= ∅, then all four points a,b, c,d lie in
a plane. In homogeneous coordinates this fact can be
expressed by the equation:

det


a0 a1 a2 a3

b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

 = 0

Expansion of this 4 × 4 determinant according to the
2×2 minors of the submatrix formed by the coordinates
of the points a and b and the minors of the submatrix
formed by the points c and d yields the following ho-
mogeneous equation:

0 = γ23α01 + γ31α02 + γ12α03 (2)
+γ03α12 + γ01α23 + γ02α31

with αij = aibj − ajbi and γij = cidj − cjdi. For
the sequel it is convenient to assume that our lines are
oriented from the lower to the higher end point, i.e.
a3 ≤ b3 and c3 ≤ d3 and hence α03 ≥ 0 and γ03 ≥ 0.
Moreover we restrict ourselves to the case α03 > 0 and
γ03 > 0, the other cases being simpler.

The Plücker coordinates αij (and the Plücker coeffi-
cients γij) are not independent. They fulfill the equa-
tions

α01 α23 +α02 α31 +α03 α12 = 0,
γ01 γ23 + γ02 γ31 + γ03 γ12 = 0. (3)

With the help of the bilinear equation (2) one can in-
terpret the collision of the two lines Lab and Lcd in IR3

as a collision of a point pab with a hyperplane Hcd in
IR6, where pab and Hcd are given by:

Hcd : γ23ξ1 + γ31ξ2 + γ12ξ3

+γ03ξ4 + γ01ξ5 + γ02ξ6 = 0
pab : (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)T =

(α01, α02, α03, α12, α23, α31)T
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4.2 Collision times for translationally
moving lines

In this subsection we compute the possible times of a
collision between a translationally moving line Lab and
a stationary line Lcd.

The translation of the line Lab(τ) appears in Plücker
space as a corresponding motion of the point pab(τ). Its
Plücker coordinates are obtained as the 2× 2 minors of
the following matrix:[

a0 a1 a2 a3+τa0

b0 b1 b2 b3+τb0

]
,

pab(τ) = (α01, α02, α03, α12, α23−τ α02, α31+τ α01)

Substituting these coordinates in the plane equation
Hcd we obtain:

u1τ + u0 = 0 where
u1 = γ02α01 − γ01α02

u0 = γ23α01 + γ31α02 + γ12α03

+γ03α12 + γ01α23 + γ02α31.

In the general case, when the projections Lab and Lcd
of the lines onto the x1x2-plane are not parallel, we get
u1 6= 0 and therefore

τ0 = −u0

u1
. (4)

Otherwise, if u1 = 0, a collision can only occur if u0 = 0
and Lab = Lcd. These conditions describe the follow-
ing situation: the lines Lab and Lcd have to be parallel
or to intersect; additionally they must lie in the same
plane perpendicular to the x1x2-plane. In this case the
collision detection of the line segments can be described
as a two-dimensional problem.

It is easy to see that a collision between two segments
in 2-space is always a collision between a vertex of one
segment and the other segment. Appropriate case de-
compositions yield a linearization of dimension less than
5.

As far as the collision test for polyhedra is concerned
these cases can be ignored, because they are detected
during the collison test of vertices and facets (see Sec-
tion 6).

4.3 Conditions for the collision of trans-
lationally moving lines

We want to derive linear expressions, which only depend
on the coordinates of a and b, for the predicate [0 <
τ0 < t]. We have the equivalence

[0 < τ0 < t]⇐⇒
[u1 > 0] ∧ [u0 < 0] ∧ [t u1 + u0 > 0]

∨ [u1 < 0] ∧ [u0 > 0] ∧ [t u1 + u0 < 0]

where the term tu1 + u0 can be written in linearized
form as follows:

tu1 + u0 = γ02(tα01 + α31) + γ01(−tα02 + α23)
+γ03α12 + γ12α03 + γ23α01 + γ31α02.

This gives a linearized form of dimension 6 for the pred-
icate [0 < τ0 < t] .

4.4 Conditions for the collision of trans-
lationally moving line segments

We use the following relation in order to answer the
question, whether the line segments really intersect, in
case the corresponding lines collide:

[lab(τ0) ∩ lcd 6= ∅] ⇐⇒ [lab(τ0) ∩ lcd 6= ∅]

With lab(τ0) and lcd we denote the projection of the two
line segments onto the x1x2–plane. Note that lab(τ0) =
lab because lab is moving in the positive x3-direction.

Projection of the line segments onto the x1x2–
plane

We project the line segments lab and lcd onto the x1x2–
plane.

lab : x = a + λ(b− a), where 0 < λ < 1
lcd : x = c + µ(d− c), where 0 < µ < 1

Then

[lab ∩ lcd 6= ∅]⇐⇒
([c left of Lab] ∧ [d right of Lab]
∧[a right of Lcd] ∧ [b left of Lcd])

∨
([c right of Lab] ∧ [d left of Lab]
∧[a left of Lcd] ∧ [b right of Lcd]).

The point c lies to the left/right of the orientated line
Lab iff the following is true:

((b− a)× (c− a))3
<
> 0

⇐⇒ (a× b)3 + (b× c)3 + (c× a)3
<
> 0

⇐⇒ a1b2 − a2b1 + c2b1 − c1b2 + c1a2 − c2a1
<
> 0.

Therefore

[lab ∩ lcd 6= ∅]⇐⇒

( [a1b2 − a2b1 + c2b1 − c1b2 + c1a2 − c2a1 > 0]
∧ [a1b2 − a2b1 + d2b1 − d1b2 + d1a2 − d2a1 < 0]
∧ [c1d2 − c2d1 + d1a2 − d2a1 + c2a1 − c1a2 < 0]
∧ [c1d2 − c2d1 + d1b2 − d2b1 + c2b1 − c1b2 > 0])

∨
( [a1b2 − a2b1 + c2b1 − c1b2 + c1a2 − c2a1 < 0]
∧ [a1b2 − a2b1 + d2b1 − d1b2 + d1a2 − d2a1 > 0]
∧ [c1d2 − c2d1 + d1a2 − d2a1 + c2a1 − c1a2 > 0]
∧ [c1d2 − c2d1 + d1b2 − d2b1 + c2b1 − c1b2 < 0]).
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4.5 Collision times for rotating lines

A counterclockwise rotation of the line Lab(ϕ) about
the x3–axis induces a corresponding motion of the point
pab(ϕ) in Plücker space. Its Plücker coordinates are
given by the 2× 2 minors of the following matrix:[

a0 cosϕa1+sinϕa2 − sinϕa1+cosϕa2 a3

b0 cosϕ b1+sinϕ b2 − sinϕ b1+cosϕ b2 b3

]

pab(ϕ) = (cosϕα01+sinϕα02,−sinϕα01 +cosϕα02,

α03, α12, cosϕα23+sinϕα31,−sinϕα23+cosϕα31)

Substituting these coordinates into the plane equa-
tion Hcd results in:

u2 cosϕ+ u1 sinϕ+ u0 = 0 where (5)

u2 = γ23 α01 + γ31 α02 + γ01 α23 + γ02 α31

u1 = −γ31 α01 + γ23 α02 − γ02 α23 + γ01 α31

u0 = γ12 α03 + γ03 α12

The following parametric formulation

sinϕ=
2τ

1+τ2
, cosϕ=

1−τ2

1+τ2
, where τ=tan

ϕ

2
,

0 < ϕ < π, transforms equation (5) into a quadratic
equation

u′2 τ
2 + u′1 τ + u′0 = 0, where (6)

u′2 = u0 − u2, u′1 = 2u1, u′0 = u0 + u2

with the two roots:

τ1 =
−u′1+

√
u′21 −4u′2u

′
0

2u′2
, τ2 =

−u′1−
√
u′21 −4u′2u

′
0

2u′2

for u′2 6= 0. As expected there are in general two points
in time where the two lines intersect. If u′2 = 0 and
u′1 6= 0 there is one collision at time −u

′
0
u′1

and an other
at ∞, which corresponds to a rotation angle of ϕ = π.
The degenerate case u′2 = u′1 = 0 means that a collision
during the rotation can only occur if u′0 = 0 and the
lines lie on the same cone respectively cylinder for which
the x3-axis is the axis of symmetry. Therefore collision
detection can be reduced to a 2-dimensional problem,
so that we only need to test a collision between vertices
and segments.

4.6 Conditions for the collision of rotat-
ing lines

τ1 and τ2 are real numbers only if [u′21 − 4u′2u
′
0 ≥ 0].

Under this precondition the predicates [0 < τi < t] can

be transformed as follows

[0 < τ1 < t]⇐⇒
[u′2 > 0]∧([u′1 < 0]∨ [u′0 < 0])∧ [2tu′2 + u′1 > 0]

∧ [t2u′2 + tu′1 + u′0 > 0]

∨ [u′2 < 0]∧ [u′1 > 0] ∧ [u′0 < 0] ∧ ([2tu′2 + u′1 < 0]
∨ [t2u′2 + tu′1 + u′0 > 0])

∨ [u′2 = 0]∧ [u′1 > 0] ∧ [u′0 < 0] ∧ [tu′1 + u′0 > 0].

For [0 < τ2 < t] we get similar conditions. We now
derive the linear expressions for the various predicates.
From equation (6) we obtain the following equations

2tu′2 + u′1 =
2γ03(tα12) + 2γ12(tα03) + 2γ23(−tα01 + α02)
+2γ01(−tα23 + α31) + 2γ02(−tα31 − α23)
+2γ31(−tα02 − α01)

t2u′2 + tu′1 + u′0 =
γ02(−t2α31 − 2tα23 + α31) + γ12(t2α03 + α03)
+γ01(−t2α23 + 2tα31 + α23) + γ03(t2α12 + α12)
+γ23(−t2α01 + 2tα02 − α01)
+γ31(−t2α02 − 2tα01 + α02),

u′21 − 4u′2u
′
0 = (7)

(γ2
23 + γ2

31)(α2
01 + α2

02) + (γ2
01 + γ2

02)(α2
23 + α2

31)
−2(γ02γ23 − γ01γ31)(α02α23 − α01α31)
−γ2

12(α2
03)− γ2

03(α2
12).

In each case the predicates [t2u′2 + tu′1 +u′0
<
> 0], [2tu′2 +

u′1
<
> 0] and [u′21 − 4u′2u

′
0 ≥ 0] are linear in at most 6

expressions δijk (a,b, t), which are given as polynomials
in the coordinates of a and b and the time parameter t.
This means we have found a linearization of dimension
6 for the predicate [0 < τi < t].

4.7 Conditions for the collision of rotat-
ing line segments

We reduce the decision whether [lab(τi) ∩ lcd 6= ∅] (in
case the corresponding lines collide) to the calcula-
tion of the x3–coordinate z of the intersection points
of the corresponding lines and a test whether z ∈
[min{a3, b3},max{a3, b3}] ∩ [min{c3, d3},max{c3, d3}].
For the calculation of the x3–coordinates of the possible
intersection points we use cylindrical coordinates.

Representation of line segments in cylindrical co-
ordinates

If we represent the line segments

lab : x = a + λ(b− a), where 0 ≤ λ ≤ 1,
lcd : x = c + µ(d− c), where 0 ≤ µ ≤ 1,
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in cylindrical coordinates (r, ϕ, z), we can easily check,
whether the line segment lab can collide with the line
segment lcd during a full rotation about the x3–axis.
During its rotation the line segment lab generally de-
scribes a hyperboloid, whose projection onto the (r, z)–
plane of the cylindrical coordinate system yields a hy-
perbolic segment. The rotating line segment lab can
only collide with lcd, if the two corresponding hyper-
bolic segments intersect in the (r, z)–plane. In order
to compute this intersections we have to find the (r, z)-
representation for each point in IR3, which is given by
its Cartesian coordinates (x1, x2, x3). We get

z = x3 , r =
√
x2

1 + x2
2.

Since xi = ai + λ(bi − ai) and λ =
z − a3

b3 − a3
, we have for

a3 6= b3:

r2 =
1

(b3−a3)2

(
(a1b3 − a3b1 + z(b1 − a1))2

+(a2b3 − a3b2 + z(b2 − a2))2
)
.

We proceed with Plücker coordinates and get:

r2 =
1
α2

03

(
(α31 − zα01)2 + (α23 + zα02)2

)
= v2z

2 + v1z + v0,

where v2 = α2
01+α2

02
α2

03
, v1 = 2α02α23−α01α31

α2
03

, and v0 =
α2

23+α2
31

α2
03

. The question whether the line segment lab col-
lides with the stationary segment lcd while it is rotating
about the x3–axis can be answered by calculating the
intersection between the following two parabolic seg-
ments:

r2
ab(z) = v2z

2 + v1z+ v0 with a3 ≤ z ≤ b3,
r2
cd(z) = w2z

2 +w1z+w0 with c3 ≤ z ≤ d3.

W.l.o.g. let the line segments be given, such that
a3 ≤ b3 and c3 ≤ d3. The intersection points of the
two parabola can be found as the roots of a quadratic
equation:

v′2z
2 + v′1z + v′0 = 0 where v′i = vi − wi, (8)

z1 =
−v′1+

√
v′21 −4v′2v

′
0

2v′2
, z2 =

−v′1−
√
v′21 −4v′2v

′
0

2v′2
,

for v′2 6= 0.
But a collision of the rotating line segment lab with

lcd exists only if the quadratic equation has real roots
([v′21 − 4v′2v

′
0 ≥ 0]) and these lie in the interval [a3, b3]∩

[c3, d3]. For v′2 = 0 and v′1 6= 0 we get one solution at
− v
′
0
v′1

and an other at ∞. The case v′2 = v′1 = v′0 = 0
occurs iff Lcd lies on the hyperboloid generated by the
rotating line Lab. In this case possible collisions can be

ignored because they are detected when testing vertices
against facets.

By using cylindrical coordinates we have succeeded
in finding the x3–coordinates of the possible intersec-
tion points of the rotating line Lab(τ) with Lcd. But it
remains open, to which x3–coordinate the collision time
τi corresponds. It can be shown that z1 belongs to τ1
and z2 to τ2, if we assume that a3 < b3 and c3 < d3.
That is

[lab(τi) ∩ lcd 6= ∅]⇐⇒ (9)
[zi > a3] ∧ [zi < b3] ∧ [zi > c3] ∧ [zi < d3].

In the following we want to derive linearized conditions
for the predicates [zi < Z] respectively [zi > Z] For
example we get

[z1<Z]⇐⇒
[v′2>0]∧ [2Zv′2+v′1>0]∧ [Z2v′2+Zv′1+v′0>0]

∨ [v′2<0]∧([2Zv′2+v′1<0]∨ [Z2v′2+Zv′1+v′0>0])

∨ [v′2 =0]∧ [v′1>0]∧ [Zv′1+v′0>0]

the other cases being similar. It holds:

v′2 =
α2

01 + α2
02

α2
03

− γ2
01 + γ2

02

γ2
03

,

v′1 = 2
α02α23 − α01α31

α2
03

− 2
γ02γ23 − γ01γ31

γ2
03

, (10)

v′0 =
α2

23 + α2
31

α2
03

− γ2
23 + γ2

31

γ2
03

.

The predicates [v′21 − 4v′2v′0 ≥ 0] and [u′21 − 4u′2u′0 ≥
0] are equivalent, since both express the fact that the
rotating line Lab collides with the stationary line Lcd
during a full rotation. On the basis of relations (10)
and equation (3) it holds:

u′21 − 4u′2u
′
0 = α2

03γ
2
03 · (v′21 − 4v′2v

′
0). (11)

According to equation (7) the predicate [v′21 −4v′2v′0 ≥ 0]
is linear in the expressions α2

01+α2
02, α2

23+α2
31, α01α31−

α02α23, α2
03 and α2

12.
Now let us consider the predicates [v′2<> 0], [2Zv′2 +

v′1
<
> 0] and [Z2v′2 +Zv′1 +v′0

<
> 0]. A multiplication with

α2
03 γ

2
03 yields:

[v′2<> 0]⇐⇒[
γ2

03(α2
01+α2

02)−(γ2
01+γ2

02)(α2
03)<> 0

]
,

[2Zv′2+v′1<> 0]⇐⇒[
2Zγ2

03(α2
01+α2

02)−2Z(γ2
01+γ2

02)(α2
03)

+2γ2
03(α02α23−α01α31)

−2(γ02γ23−γ01γ31)(α2
03)<> 0

]
,

[Z2v′2+Zv′1+v′0<> 0]⇐⇒[
Z2γ2

03(α2
01+α2

02)−Z2(γ2
01+γ2

02)(α2
03)

+2Zγ2
03(α02α23−α01α31)−(γ2

23+γ2
31)(α2

03)
−2Z(γ02γ23−γ01γ31)(α2

03)+γ2
03(α2

23+α2
31)<> 0

]
.
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If Z = c3, d3 (see condition 10), then these predi-
cates are linear in the four expressions α2

01 + α2
02, α2

03,
α02α23 − α01α31, α2

23 + α2
31, and the corresponding co-

efficients only depend on the coordinates of the points
c and d. However if Z = a3, b3, then one can define
the expressions Zk (α2

01 + α2
02), Zk α2

03, Zk (α02α23 −
α01α31), Zk (α2

23+α2
31) for k = 0, 1, 2, so that the former

predicates are linear in at most six of these expressions,
where again the corresponding coefficients only depend
on the coordinates of the points c and d.

4.8 Linearization

To summarize we firstly computed the conditions for the
fact that the moving line Lab intersects the stationary
line Lcd during a time interval [0, t]. In the next step (see
Sections 4.4 and 4.7) we got the additional conditions
for the intersection of the corresponding line segments.
The combination of these two sets of conditions gives
the wanted linearization, i.e.

[∃τ : 0 < τ < t, lab(τ) ∩ lcd 6= ∅]
⇐⇒

∨
i

([0 < τi < t] ∧ [lab(τi) ∩ lcd 6= ∅])

Until now we have found linearizations with dim = 6
where δijk (c,d) are polynomials in the coordinates of
c and d and ζijk (a,b, t) are polynomials in t and the
coordinates of a and b. In order to reduce the dimen-
sion we divide each inequality by a positive coefficient
ζijk (a,b, t), which we can always find using the fact that
α03 > 0. So we get a linearization with dimension
dim = 5. For example let us consider the condition
[2tu′2 + u′1 > 0] (see (7)).

We can divide the inequality by the term 2tα03 > 0
and replace the inequality 2tu′2 + u′1 > 0 by

0 < γ01
−tα23 + α31

tα03
+ γ02

−tα31 − α23

tα03

+γ03
tα12

tα03
+ γ23

−tα01 + α02

tα03

+γ31
−tα02 − α01

tα03
+ γ12.

Now we can apply the construction of Section 3.2, es-
pecially Corollary 4.

5 Improved solution for the
translational case

Applying a recent result of Pellegrini we can construct
a faster algorithm for translationally moving line seg-
ments. During its movement a segment moves over a
quadrilateral which all segments, that are hit during
the translation, have to intersect. We can triangulate

the quadrilateral and determine all segments intersect-
ing one of the resulting triangles. During this process
it can happen that we count segments twice, if they in-
tersect the common edge of the two triangles. But for
our emptiness problem it is sufficient to work inaccu-
rately. We can count the number of collisions and when
there are less than three of them we compute them and
check whether they are different. Therefore we have to
consider the following subproblem:

Given a set L of n line segments, construct a
data structure such that for any query trian-
gle one can efficiently count/compute the inci-
dences with L.

In [Pel92] and [AM92] there is a solution based on
Plücker coordinates of lines. In contrast to our method
based on Theorem 1, the construction of the data struc-
tures for points and hyperplanes in Plücker space makes
use of the result that the zone of the Plücker hy-
persurface among n hyperplanes has size O(n4 log n)
([APS93]). This additional structure is essential to ob-
tain a final bound of O(n8/5+ε).

Theorem 6 Given n segments there is a data structure
using O(m) space, n1+ε ≤ m ≤ n4+ε, such that we
can count the number of segments intersected by a query
triangle in time O(n1+ε/m1/4). For reporting these k
segments we need O(k) additional steps. The structure
can be build in time O(m).

The query algorithm can be replaced by a parallel
version running in O(polylog n) parallel steps using
O(n1+ε/m1/4) processors, which allows us to apply the
parametric search technique efficiently.

Corollary 7 Given a set of n line segments, each of
which is moving translationally in some fixed direction
over distance t and a set of n stationary line segments
in IR3 we can compute the first collision between the two
sets in time O(n8/5+ε).

6 Collisions between facets and
vertices

Recall that we consider two polyhedra one of which is
moving (let us say P1) whereas the other one, P2, is
stationary. Let Vi, Ei, Fi, i = 1, 2, denote the sets of
vertices, edges and facets of the polyhedra. Only trans-
lations or rotations are permitted as motions. Until now
we have shown how to compute the first collision be-
tween the edges of P1 and P2. We still have to determine
the first facet of P2 hit by a vertex of P1 respectively
the first facet of the moving polyhedron which collides
with a vertex of P2. A solution to this problem, which
applies to both kinds of motions, is already presented
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in [Sch94] based on ideas from [Nu85]. The facets and
vertices are projected onto a 2-dimensional space and
a plane sweep technique is applied. For completeness
we present a sketch of this construction. We only de-
termine the time of the first collision between the set of
vertices of P1 and the set of facets of P2.

In case of a translation we project the facets and ver-
tices onto a plane perpendicular to the direction of the
motion. If the polyhedron P1 is rotating about an axis
(see Section 4.7) we can apply a similar method, but we
have to work with cylindrical coordinates: the projec-
tion is done by removing the angle-component. In both
cases we get in the projection-plane a point set V1 which
is the image of the vertices of P1 and 2-dimensional re-
gions F2 bounded by line segments respectively hyper-
bola segments. Now we execute a plane sweep: stop-
points/halts are starting- and end-points, extremal- and
intersection-points of the segments. Between two con-
secutive halts the ordering of the intersection-points be-
tween the segments and the plane sweep S is always the
same. Therefore we can save the active segments in a
balanced search tree which will be the primary structure
for saving more informations.

Let R be a region between two segments, which are
adjacent on S, and assume that S goes over R between
two consecutive halts. Every vertex of P1, whose pro-
jection v lies in R, can only collide with facets of P2, the
projections f of which contain R. Therefore for each re-
gion R we keep track of the set FR = {f ∈ F2|R ⊆ f}.
Thus for every segment we save the set FR of the region
lying above it.

Dependent on the kind of motion we can define an
ordering for each set FR. During a rotation every point
with projection in R will stab the regions in FR with
the same cyclic ordering; in the case of a translation we
will get a linear order. As secondary structure which
stores the elements in FR we again use a balanced search
tree which allows to find the first facet hit by a vertex
projected onto R in logarithmic time.

The sweep line stops at every point v ∈ V . There
we determine the region R containing v and search the
facet of FR which is hit by the corresponding vertex
first. Both steps can be done in logarithmic time using
the tree structure.

During the sweep we have to hold all regions inter-
sected by the sweep plane S as well as the sets FR. To
save space we only store the changes of the sets FR (see
[Nu85]). Using this idea each set FR can be stored with
logarithmical costs.

The run time of the algorithm is O((|V1| + |E2| +
CE2

) log |E2|) where CE2
denotes the number of inter-

sections of the projected edges of P2. Unfortunately
this value could be quadratic in the complexity of the
polyhedron. Therefore we divide the problem into sev-
eral smaller subproblems. W.l.o.g. we assume that the

facets of P2 are triangles (a triangulation of the surface
does not change the asymptotic complexity of P2). We
divide F2 in

√
|F2| many subsets of size

√
|F2|. For each

subset we execute the above plane sweep algorithm.

Theorem 8 Consider two polyhedra P1, P2, one of
which is moving translationally or rotating about a fixed
axis. The first collision between a vertex of one of
them and a facet of the other can be computed in time
O((|P1|+ |P2|)3/2 log(|P1|+ |P2|)).

As already in the case of edge/edge collisions there is
an improved solution for the translational motion. This
follows from the fact that vertical ray shooting into a
set of disjoint triangles can be done with O(n4/3+ε) pre-
processing and O(n1/3) query time. The algorithm for
this kind of ray shooting selects all triangles intersected
by the line containing the query ray and determines
the first triangle that is hit using binary search. We
show how this can be done by simplex composition. We
project all triangles and the query ray, respectively the
supporting line, onto the plane perpendicular to the di-
rection of the motion. A query line intersects a triangle
if and only if the projection of the line lies within the
projection of the triangle. Since the projection of the
line results in a point in the plane the first part of the
algorithm corresponds to planar point location which is
dual to halfspace range searching in the plane; in the
second step we have to find the first triangle hit by the
query ray among all the triangles stabbed by the sup-
porting vertical line. This can be done simply by sorting
and searching. The projection of the triangles divides
the plane into cells each of which corresponds to a cer-
tain stabbing order, i.e. all points in such a cell are the
images of vertical lines intersecting the same triangles
in the same order. The projection of the supporting
line has to lie in the common intersection of all stabbed
triangles. We compute this region, choose an arbitrary
point in it and determine the stabbing order of the cor-
responding line, which is the same for all points in the
region, in time O(n log n). This finishes the preprocess-
ing. To find the first triangle hit by the query ray we
do binary search on this order. Comparisons are made
by determining the relative position of the ray’s starting
point with respect to a triangle. Applying Theorem 1
we get

Theorem 9 Consider two polyhedra P1, P2, one of
which is moving translationally. The first collision be-
tween a vertex of one of them and a facet of the other
can be computed in time O(n4/3+ε).

7 Conclusion

We have shown how to determine the collision between
a stationary and a moving polyhedron in sub-quadratic
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time. For that we have computed the first collision be-
tween vertices of one polyhedron and facets of the other
and the first collision between the edges of the polyhe-
dra. We have reduced the latter task to the formulation
of an appropriate linearization which is derived from an
explicit computation of the collision times. We could do
this because the equations of the motions have degree at
most two. The natural question is how we can proceed
if the motion of the polyhedron is more complicated, i.e.
if the equations have degree greater than five (then no
explicit formulation of the roots exists).

Actually we do not need an explicit representation of
the collision times for the linearization. We only need
to know whether two particular features of the poly-
hedra collide during a given time period. Formally we
come upon the problem whether a system of (constant
many) multivariate polynomial equations with constant
degree has a common real solution in a box or not. Ap-
plying recent results on counting real zeros of a system
of algebraic equations [P91, US92] one can decide this
question using a finite number of algebraic operations
on the coefficients of the polynomials and the vertices
of the box. This extension of Sturm’s theorem to ar-
bitrary dimensions is purely symbolic so we can use it
to get appropriate linearizations, which leads to sub-
quadratic collision detection algorithms for a wide class
of motions.
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