Heuristic Motion Planning with Many Degrees of Freedom

Thomas Chadzelek

Jens Eckstein

Elmar Schomer *

21st June 1996

Abstract

We present a heuristic approach to the geometric
motion planning problem with the aim to quickly
solve intuitively simple problems. It is based on
a divide-and-conquer path search strategy which
makes inquiries about feasible paths; to answer
these, we develop an efficient collision detection
scheme that handles translations and rotations of
polyhedra to compute all times of collision. The
whole algorithm can be easily implemented and has
been successfully tested in a program for assembly
planning.

1 Introduction

This work is based on a simple but general path
search strategy for spaces of arbitrary dimen-
sion. It is a heuristic algorithm for the general-
ized movers’ problem that does not explicitly com-
pute or represent configuration space but rather uti-
lizes a collision detection subroutine for inquiries
about possible paths. The approach uses divide-
and-conquer and can be applied to many concrete
situations, e.g. to motion planning for a single rigid
body moving freely, a jointed robot arm, or even
several objects moving concurrently. The funda-
mental idea is described in [Sch92] and will be in-
vestigated and refined here; we show how to han-
dle translational and rotational degrees of freedom
separately to simplify implementation and speed up
execution. Quaternions make it possible to describe
purely rotational motion planning as a path search
problem in a spherical geometry.

Special care has been taken to make the collision
detection scheme as efficient as possible, especially
with respect to practical applications, since it de-
termines the total running time of our algorithm.
It is shown how to compute all intervals of inter-
sections of a polyhedron P moving by a given rota-

*Lehrstuhl Prof. G. Hotz, FB 14 Informatik, Universi-
tdt des Saarlandes, Saarbriicken, Germany. Please contact
our WWWe-server http://hamster.cs.uni-sb.de for more
information, including technical reports.

tion or translation amidst polyhedral obstacles @ in
time O(nlogn), where n := |P||Q|. The notation
|P| means the size of a description of P’s bound-
ary. We deal directly with non-convex polyhedra
and use enveloping techniques to reduce the aver-
age running time dramatically; these approaches go
back to [Ca87] and [Sch94].

Former approaches to motion planning have ei-
ther led to general procedures which could not be
handled in practice like the famous one described
by Schwartz and Sharir. Or they confined them-
selves to solving arbitrary instances of simple mo-
tion planning problems efficiently, e.g. moving a
disc between polygons in the plane. In contrast to
that we shall try here to solve simple instances of
arbitrary motion planning problems efficiently, i.e.
to find a practical algorithm for use with practi-
cal problems. This was especially motivated by an
ongoing research project on computer aided manu-
facturing where we investigate the interactive sim-
ulation and planning of assembly processes includ-
ing robots. Fast on-line collision detection schemes
were developed in that context and influenced this
work. Furthermore, motion planning was needed in
order to simplify the specification of assembly plans,
i.e. the engineer should be allowed to describe what
she wants done rather than how to do it.

2 A Path Search Strategy

The generalized movers’ problem consists of the de-
scription of an object to be moved together with its
initial and final position and an obstacle. It is the
task of motion planning then to find a collision-free
path for the object or to decide that such a path
does not exist. In the case we study here there are
no restrictions with respect to the dynamics of the
motion, solely geometric constraints are to be ob-
served.

One cause for the long running time of “conven-
tional” methods lies in the fact that precise and
complete information about the clearance of the
moving object within its environment is computed.

Typically, a point in a high-dimensional space is
used to represent a current configuration of the
scene; its coordinates reflect the degrees of free-
dom of all moving parts, e.g. as distances or angles.
This is known as the configuration space approach
and was first presented by Lozano-Peréz. The set
of all points representing configurations where colli-
sion occurs is called configuration obstacle, its com-
plement is named free-space. Explicit computation
and representation of that information for complex
scenes requires enormous time and large storage ca-
pacity.

We shall not do this but nonetheless use configu-
ration space as an abstract concept allowing a uni-
fied description of motion planning problems. Only
the intersection of a line with the configuration ob-
stacle is computed; this can be done efficiently even
in high dimensions based only on the description
of the original object and obstacle. To demon-
strate the use of such minimal information, we shall
first describe the path search strategy in the plane,
which develops from a simple nondeterministic ver-
sion. We then extend it to spaces of higher dimen-
sion and show how to handle degrees of freedom
separately—this will be very important for the col-
lision detection presented in the next section.

2.1 Nondeterministic Description

Consider the following problem in two dimensions:
Let O C IR? be a subset of the plane, called obsta-
cle, together with a start and goal a,z € IR?. Find
a way for a point moving from a to z avoiding the
obstacle O.

Here the plane represents the configuration space
of some motion planning problem; thus we assume
that O is not directly accessible to the planning
strategy but only by inquiries about the intersec-
tion of a line with O. Therefore a path consid-
ered by our strategy is piecewise linear and may
be described by the tuple (vg,...,v,) of its ver-
tices v; € IR%. Because of the known complexity of
many motion planning problems we do not attempt
to decide whether such a path exists but merely try
to find one; it is in this sense that our heuristic
algorithm remains incomplete.

To construct a path, we first check the straight
connection (a,z) of start and goal for intersections
with the obstacle; if none are found, we are done.
Else a borderline b separating a from z is considered,
e.g. the perpendicular bisector of the two points.
This is illustrated in figure 1; p denotes the border-
line’s base point.

Idea: Every path from a to z, especially every

b

p
X

X o
X N

0]

q
X

Figure 1: A simple motion planning problem

collision-free one, must cross this borderline sepa-
rating a from z. In order to avoid the obstacle O
such a crossing can only take place on the free sec-
tions of b.

This means that we guess a via point q on the
line b outside of O and try to recursively connect
a to q and q to z, combining the two paths to one
solution (a,...,q,...,z)—a divide-and-conquer ap-
proach. It is clear that this method generally does
not find an optimal path with regard to any crite-
rion, e.g. path length or safety distance.

The nondeterministic procedure shown in figure 2
constructs a piecewise linear path for a point mov-
ing from a to z avoiding the obstacle O C R?; it
succeeds if such a solution exists. Here the path is
represented as a list of points, which initially con-
tains only the starting point a, this is denoted by

[a].

given: OCR? a,zecR?
wanted: path : List(IR?)
invocation: path < connect(a, z, [a])

connect(a, z : IR?; path : List(IR?)) : List(IR?)
pP.q,r: R? ¢:IR; L : IntervalList
L « intersectSegment(a, z) collision intervals
if empty(L) then
path «— path o [z]
elsep — (a+2)/2
r— (z—a)t
L < intersectLine(p, r)
randomly choose ¢t ¢ L
q—p+tr via point
path «— connect(a, q, pathyecursive solution ...
path «— connect(q, z, path) ... of subproblems
return path

append point
base point
orthogonal
check borderline

Figure 2: Nondeterministic Path Search Strategy

Two functions are used to compute the intersec-
tion of a segment and a line resp. with the obsta-

cle O. As a result of such an inquiry, a list of in-
tervals is expected with intersectLine(p,r) = {t €
R | p+tr € O} etc. These intervals are called
collision intervals in contrast to their complement,
the free intervals; the corresponding sections on the
line are named accordingly.

2.2 Deterministic Description

Making the algorithm deterministic implies search-
ing through the possible computations of the non-
deterministic machine for an accepting one, but we
cannot search the continuum. So we shall restrict
ourselves to a small number of promising via points
on each borderline, which are then tried systemati-
cally by backtracking.

Recursion Depth We must diagnose failure, i.e.
decide that a certain computation should no longer
be tracked because it will not succeed. This is gen-
erally impossible and can only be approximated, for
instance by a limit k£ on the depth of recursion in-
volved in the path search scheme. If recursion ex-
ceeds that limit, we consider our last choice unsuit-
able and undo it. Thus we should choose k& small
enough to quickly skip futile computations but big
enough to allow scope for a solution to exist. Three
approaches have been implemented to find a useful
value for k, among them:

e Try k=0,1,2,... This is simple to implement
and never overestimates k; it works fast enough
because running time grows approximately ex-
ponential in k and is therefore dominated by
the largest value used.

e Try k = 0,1,2,... in a breadth-first manner,
keeping a tree of already known information
about subproblems; this needs a considerable
amount of memory. Different subdivisions of a
path planning problem can be tracked simulta-
neously, thus we can rate the partial solutions
according to some criterion, e.g. path length or
recursion depth, and try to improve the quality
of the constructed path.

Via Points A smart choice of them is quite criti-
cal to any practical implementation. Statistical re-
sults of pseudo-random experiments with a point
moving between discs in the plane as well as theo-
retical considerations lead to the following concept.
Choose the borderline b as the perpendicular bisec-
tor of the collision section whose centre is closest
to that of (a,z). This is locally symmetrical to a

known part of the obstacle and divides the path
planning problem quite fairly into two subproblems.

Via points are chosen as centres of free sections of
the borderline, this is again locally symmetrical and
maximizes safety distance as well; experiments sup-
port this decision. Here we assume that the whole
scene is bounded in some way, either naturally by
surrounding obstacles or artificially by a restriction
of configuration space.

Via points are then rated according to a synthesis
of two criteria: local safety distance and closeness
to the intended path. Therefore let d denote the
distance of the via point v to the line segment (a, z)
and [the length of the free section containing v. We
use the valuation function Vj(d,1) := d/I” and can
vary 0 > 0 for diverse results, e.g. with 8 = 0 the
rating depends only on the deviation of v from the
original path. To emphasize safety distance, § > 1
can be used. In order of increasing V3 the various
via points on a borderline are arranged; that list is
restricted to a small number of points.

2.3 Generalization to R"

The concept of the path search strategy described
above can be easily generalized to dimensions higher
than two with one slight difference. The notion of a
borderline must be extended to a hyper-plane sepa-
rating a from z, and it is no longer possible to cap-
ture all relevant information about it with a single
query to “intersectLine”. Thus we choose a certain
number of lines within that hyper-plane hoping to
find useful via points. It is our experience that the
directions of these lines should form an orthogonal
vector base of the configuration space, with z—a as
one axis. Note that we can no longer guarantee that
a suitable crossing point exists on any fixed line.

2.4 Separate Degrees of Freedom

Consider the case where a moving object has dis-
tinct kinds of degrees of freedom, e.g. translational
and rotational ones, or think of a jointed robot arm
with many links. To simplify the computation of the
intersection of a line with the configuration obstacle
remarkably, we handle these degrees of freedom sep-
arately. This means that the configuration space C'
is divided accordingly, i.e. d degrees of freedom fall
into n groups and we have C = Cy X --- X C,_1 C
RY. We write (ag,...,an—1) € C where the a; may
be vectors themselves and speak of “coordinates” in
this generalized sense. A feasible path for a moving
point must then consist of pieces changing only one
coordinate each.

What does “straight connection” mean then?
The algorithm given here changes coordinates in a
simple cyclic order for reasons of efficiency; this al-
lows to change the “dodging” coordinate before the
colliding one when trying to reach a via point—
which is necessary. The notion of dodging in a di-
rection perpendicular to the original path is easily
conserved; the motion must use another coordinate
or be perpendicular within the same one in the usual
sense.

Given a separation of configuration space as
shown above, and start and goal points a =
(agy... an—1) € C, z = (20,...,2n-1) € C,
the planning strategy is called with path <«
connect(a, z, 0, [a]) and tries to compute a solution.
We only show the non-deterministic version for rea-
sons of clarity, determinism is achieved as said be-
fore and merely adds a little book-keeping. The
parameter j controls the cyclic order of changing co-
ordinates, the degrees of freedom C; are used first;
“viaPoint” yields a random via point and the index
of its dodging coordinate.

connect(a, z : C; j: IN; path : List(C)) : List(C)
k:IN; pos,q:C; L : Intervallist
POS — a current position (steps to z)
repeat pos; < z;
L « intersectSegment(a, pos)
if empty(L) then path <« path o [pos]
a < pos
j—ji+1 (modn)
until - empty(L) V a =z
if = empty(L) then collision in coord. j
(¢, k) « viaPoint(a, pos, Ly dodges in coord. k
path «— connect(a, q, k, path)
path < connect(q, z, j, path)
return path

Figure 3: Planning Strategy for Separate Degrees of
Freedom

3 Efficient Collision Detection

The path search strategy issues inquiries about the
intersection of a line with the configuration obstacle.
These are answered by an efficient collision detec-
tion algorithm based on a description of all objects
in work space; we restrict ourselves to polyhedra. A
line in configuration space describes a coordinated
motion of all moving objects with no beginning or
end—a segment means a bounded motion. Inter-
section with the configuration obstacle corresponds
to collision among the polyhedra in work space.
We separate the translational and rotational de-

grees of freedom by imposing the restriction, that at
a given time either one object may rotate about a
fixed axis with constant angular velocity or all may
translate simultaneously, each with its own fixed
speed and direction. This greatly reduces running
time in practical applications, because enveloping
techniques can be used. The section on rotations
shows a suitable modification of the path search
strategy for such motions.

Consider all pairs of one moving object and one
fixed obstacle, exploiting the relative nature of
translational motions. A predicate will be derived
to test the static overlap of these polyhedra at their
current position, it is described by a boolean ex-
pression. By evaluating that expression skillfully,
all intervals of a given motion, where overlap oc-
curs, can be computed quickly; this concept is due
to [Ca87]. A boundary representation is used which
lists all vertices, edges, and faces of a polyhedron as
well as their adjacency relations (|P| = v + e+ f);
convexity is required for all faces.

3.1 Static Detection of Overlap

The Predicate Two polyhedra overlap iff their
surfaces intersect or one is entirely contained in the
other. We take pattern from Canny’s boolean pred-
icate for the first part, the second will be handled
differently in our algorithm. Intersection of surfaces
means that an edge of one body pierces a face of the
other including degenerate cases, where the bound-
aries of these features interact.

Let [:= [g be the line segment or edge with ver-
tices p and q; f the face with vertices v, ..., vi_1
contained in the plane Py gy, : nTx = ng. The ver-
tices v; are ordered counter-clockwise if f is viewed
contrary to n. We now assume that nT(q —p) > 0;
if it is negative, we just exchange p and q; if it is
zero, the edge and face are parallel which can be
safely ignored (cf. [Ch95]). Thus the result for this
case is:

INf#0 —< nTq>no A nTp < ng
AVO<i<k: det[q—p,vit1 —vi,p—Vvi] >0

This yields a predicate S(I, f) for the intersection
of an edge and a face; its size is ©(k). If two polyhe-
dra P and @) are given, we construct the disjunction
of S(I, f) over all pairs of edges and faces; this yields
the complete predicate S(P, Q) for the intersection
of surfaces, its size is O(|P||Q]).

Containment The test we use yields true for a
superset of all configurations where P C @, but

only for such with PN Q # @. Our randomized
algorithm is much easier to implement than a static
boolean predicate for this task. We check whether
some random point v on the surface of P lies within
@ or not; this is easily decided by looking at a ray
from v into a fixed direction. If the ray intersects
any edges or vertices of (), we choose another point,
else we count the number of intersections with faces.
An odd number means that v € Q; of course this
test must also be applied symmetrically for Q C P.

3.2 Translational Case

The moving object carries out a translation from its
current position into a direction r € IR®. We write
such a general translation as a mapping T2 (x) :=
x* := x + Ar, where)\ € IR.

The Predicate We assume that the edge I g is
moving while the face remains stationary. For fixed
r we now have to determine all relevant times of
collision, i.e. all A € IR ([0, Aasaq] for “intersectSeg-
ment”) with S(T2(1), f) = true. With the above
notation, T (Ip,q) = lpr gr. The terms nTq > ng
and det[q — p,viy1 — Vi, p — vi] > 0 lead to sim-
ple linear inequalities in A, whose solutions can be
described by at most one interval, including IR or
0.

The main idea now is to evaluate S using lists of
intervals as intermediate results. The boolean oper-
ations A and V are substituted by intersection and
union on interval lists which can be easily imple-
mented to run in linear time.

A tree for S(P, Q) has O(n) leafs because of the
predicate’s size, n := |P||Q|; its depth can be re-
stricted to O(logn). That tree is pruned during
evaluation if intermediate results are IR and @ for
union and intersection resp. The atomic inequal-
ities can be evaluated in constant time, there are
at most n intervals to handle at each level of the
tree—note that neither intersection nor union can
increase the number of intervals. All in all time
O(nlogn) suffices to determine all sections of the
motion that correspond to collisions.

Containment We assume P is moving and @ re-
mains fixed and take r as direction of the ray. We
choose v within a triangle on the surface of P whose
projection onto a plane orthogonal to r does not de-
generate to a line; not every point of such a triangle
can collide with an edge or vertex of @. This part is
irrelevant for the total running time of the collision
detection scheme.

Enveloping Techniques A hierarchic approach
is used which features ever more detailed bounding
bodies around the actual polyhedra and their faces.
At the highest level, approximations of smallest en-
closing spheres are computed once for every object,
e.g. at startup time, and associated with it; these
can easily be handled even during rotations. A sim-
ple quadratic inequality can tell whether the moving
sphere intersects the other at some time during the
motion, in which case we proceed to the next level.

Bounding boxes are then computed in a special
orthogonal coordinate system with r as z-axis, thus
2- and y-coordinates now remain fixed under trans-
lation. We use axially parallel rectangloids; these
can be computed easily and may be looked upon as
the Cartesian product of z-, y-, and z-intervals; they
are stored with the polyhedron for possible re-use.
Collision-freeness is ascertained if the z-y-rectangles
do not overlap or if the z-intervals remain disjunct
even if the translation is considered. If these boxes
interfere with each other, we eventually have to look
at all edge-face-pairs but use bounding rectangloids
for individual faces first.

The test for containment can also be improved in
such a way; because of the rectangloids’ alignment
one object may only lie totally within another if the
same holds for their bounding boxes.

3.3 Rotational Case

The moving object now rotates about a fixed axis,
either through a given angle or through one com-
plete turn. It is well known that a rotation RY can
be described by an axis through the origin with di-
rection r € IR, |r| = 1 and an angle ¢ € R. Tt is
applied to a vector x € IR® by the function

x? 1= (1 —cosp)rixr +cosp x +sinprxx (1)

Another way to deal with rotations is to use quater-
nions, and as this is quite elegant we give a short
introduction here and show the applications to our
problem.

3.3.1 Motion Planning for Rotations

Quaternions Quaternions Q = (go,q) € R* will
now be written with a scalar part go € IR and a
vector part q € IR?, naturally including R and IR?
into the set of quaternions.

Rf is given by the quaternion QY :=
(cos £,sin £ r) via (0,2%) = Q¢ - (0,x) - (QF)*. All
QY are unit quaternions and form a group under
quaternion product which corresponds to composi-
tion of rotations.

Spherical Geometry The set of unit quater-
nions can be looked upon as the unit sphere Sy
in four-dimensional Euclidean space, where S,, :=
{x € R" | |x| =1}. We again read 1 = (1,0) € S4
and r = (0,r) € 84 for convenience and identify
points with their position vectors. We describe the
orientation of a polyhedron by a rotation with ref-
erence to some fixed initial position which corre-
sponds to the unity 1 of the quaternion algebra.

The orientation of a rotating object varies con-
tinuously and the corresponding quaternion traces
an arc of a great circle on the unit sphere. Such
a great circle of S,, i.e. a circle around the ori-
gin with radius 1, is uniquely determined by the
plane in which it is contained; the latter can be
given by two linearly independent vectors or two
distinct points on the sphere. In the special case
of two orthogonal axes P,Q € S, (P L Q with
respect to the standard scalar product of R"™) we
have Cp,q :=={cosp P +sinp Q | ¢ € R}.

During a full rotation the orientation of the object
describes half a great circle on Sy, namely C , for
a fixed axis r € S3. To achieve other axes, let an
initial orientation P € S; be given; this yields the
great circle Cp r.p (note that PT(r - P) = 0). For
two given orthogonal axes P,Q € Sy of a great
circle we can find an axis of rotation r € S3 with
Q = r - P. Thus complete rotations map to great
circles, and vice versa.

In this way quaternions give a neat description of
rotations which is also graphical. They can be used
to describe the path search strategy for purely rota-
tional motions in a spherical rather than Euclidean
geometry. In analogy to the approach described for
the plane, we need only two major concepts. The
direct connection of two positions is given by the
unique great circle containing them. The notion
of perpendicular dodging also has a simple meaning
based on the following lemma: Great circles on Sy
are perpendicular iff the corresponding azes of rota-
tion are.

Path Search Strategy Quaternions and the
spherical geometry are applied to motion planning
by a modification of our path search strategy, which
is thought of as taking place on the unit sphere Sy.
Initial and final configurations a and z are mapped
to points via the correspondence with quaternions
mentioned above. Then the straight motion from a
to z, i.e. a rotation about the axis associated with
the great circle Cy, through these two points, is
checked for its free and unfree segments. To dodge
collision situations, we look at great circles perpen-
dicular to Cj 5, in four dimensions there is one de-

gree of freedom for this choice. We apply techniques
similar to those mentioned for IR™ to select a num-
ber of circles and to find suitable via points on them;
this involves checking full rotations about axes per-
pendicular to that of the original “straight” motion.
These via points are then aimed at directly and lead
to subdivisions of the problem etc.

3.3.2 Dynamic Collision Detection

We want to find out all points of time of a given
rotation of one object at which collision with a
certain obstacle takes place and describe these as
lists of intervals. This is done just like in the
translational case, with the exception that rota-
tions lead to quadratic inequalities deriving from
acosg + Bsingp + v > 0 (cf. equation 1) instead
of linear ones. The test for containment and our
enveloping strategy are also influenced slightly.

Containment We randomly pick v from a trian-
gle on P’s surface that is not perpendicular to the
axis of rotation r. The ray is replaced by the circle
v describes during rotation; if it does not intersect
Q, we send a ray from the point’s original position
to find out whether v € @ initially holds or not.

Enveloping Techniques Bounding boxes are
computed in a cylindrical coordinate system whose
axes represent angle, height, and distance with re-
spect to the fixed rotational axis. Here the angle
corresponds in its meaning to the z-coordinate in
the translational case, which was aligned to the di-
rection of motion.

References

[Ca87] John F. Canny, The Complexity Of Robot
Motion Planning , MIT-Press, (1987)

[Ch95] Thomas Chadzelek, Heuristic Motion Plan-
ning with Many Degrees of Freedom, Tech-
nical Report A 08/95, FB 14 Informatik,
Univ. des Saarlandes, Saarbriicken, (1995)

[Sch92] Achim Schweikard, A Simple Path Search
Strategy Based on Calculation of Free Sec-
tions of Motions, Engng. Applic. Artif. In-
tell. Vol. 5, No. 1, (1992), pp. 1-10

[Sch94] Elmar Schoémer, Interaktive Montagepla-
nung mit Kollisionserkennung, Dissertation
im FB 14, Univ. des Saarlandes, (1994)

